Scientific Drilling's MaxFlow Landing Ring is an innovative system that enables Drop Keeper Gyro surveys in drilling assemblies where ball activated reamers, PBL subs, or wireless pipe recovery systems are required.

MaxFlow features a unique landing ring and bullnose combination, engineered to replace traditional baffle plates and maximize the flow area past the tools. This allows high circulation rates to be maintained, ensuring optimal borehole stability, well control management, and pass through of standard drop ball sizes.

Precision gyro surveying can be achieved at all inclinations during routine BHA trips. This provides the ability to acquire high-accuracy definitive surveys with no added rig time, while helping to maintain safe and efficient operations.

DELIVERING THE ULTIMATE VALUE

- Compatibility with PBL sub, ball activated reamers, and wireless pipe recovery system, delivering enhanced operational flexibility
- Utilization allows drop gyro to be added to all BHAs, acting as a contingency in the event of a unplanned trip or MWD failure
- Heat treated materials designed to greatly extend tool life
- Flow thru bullnose enabling circulation even while Drop Keeper is seated
- Tandem Drop Keeper system allowing redundant surveys in critical, high risk applications
- Large flow area, enabling full circulation
- Certified & compliant with all offshore requirements for traceability

TARGET APPLICATIONS

- BHAs utilizing
 - Ball Activated Reamer
 - Bypass Sub
 - Wireless Pipe Recovery
 - Under-reamers

TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>4(\frac{1}{8})" IF</th>
<th>6(\frac{3}{4})" Reg. Max</th>
<th>6(\frac{1}{8})" Reg Max</th>
<th>7(\frac{3}{4})" Reg Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Collar ID</td>
<td>2(\frac{3}{8})"</td>
<td>2(\frac{7}{8})"</td>
<td>3(\frac{1}{8})"</td>
<td>2(\frac{3}{4})"</td>
</tr>
<tr>
<td>Maximum Ball OD</td>
<td>2(\frac{1}{4})"</td>
<td>2(\frac{1}{4})"</td>
<td>2(\frac{1}{4})"</td>
<td>2(\frac{1}{4})"</td>
</tr>
<tr>
<td>Maximum Unseated Flow Rate</td>
<td>675 gpm (45 fps)</td>
<td>675 gpm (45 fps)</td>
<td>950 gpm (45 fps)</td>
<td>900 gpm (45 fps)</td>
</tr>
<tr>
<td></td>
<td>1125 gpm (75 fps)</td>
<td>1125 gpm (75 fps)</td>
<td>1550 gpm (75 fps)</td>
<td>1500 gpm (75 fps)</td>
</tr>
<tr>
<td>Maximum Seated Flow Rate</td>
<td>500 gpm (45fps)</td>
<td>500 gpm (45fps)</td>
<td>775 gpm (45fps)</td>
<td>650 gpm (45fps)</td>
</tr>
<tr>
<td></td>
<td>825 gpm (75fps)</td>
<td>825 gpm (75fps)</td>
<td>1,275 gpm (75fps)</td>
<td>1100 gpm (75fps)</td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice.

Standard Baffle Plate
1 in Flow area

MaxFlow Landing Ring
2.5 in Flow Area

Patent Pending
2014

Updated July 2015
Copyright © 2014 Scientific Drilling International