Scientific Drilling’s Unconventional Logging Tool (ULT) is a compact, integrated LWD system designed for geosteering, evaluation, and optimized completion of unconventional reservoirs.

The ULT tool includes the following measurements, integrated into a 6 ¾” sensor collar:

Azimuthal Spectral Gamma Ray
MEASUREMENTS:
- High-precision total gamma ray
- Potassium, Uranium, and Thorium (K,U,Th) concentrations
- 32-bin azimuthal gamma ray borehole image

Ultrasonic Borehole Imager
MEASUREMENTS:
- 128-bin high-resolution ultrasonic amplitude and travel time images
- Independent mud slowness measurement
- 128-bin standoff/caliper from travel time and mud slowness measurements

Azimuthal Sonic
MEASUREMENTS:
- Azimuthally focused unipole transmitter with full-waveform receiver array
- Conventional compressional and shear slowness (DTC, DTS)
- 16-bin azimuthal DTC and DTS measurements

APPLICATIONS
- Geosteering
- Unconventional reservoir completion
- TOC evaluation
- Clay content determination
- Fracture detection
- Formation dip interpretation
- Formation mechanical properties
- Porosity measurement

BENEFITS
- Reduces geosteering uncertainty
- Builds accurate geologic models
- Improves petrophysical interpretations
- Characterizes the reservoir fracture network
- Develop Engineered completions strategy
- Eliminates time-consuming wireline runs

FEATURES
- Includes an inclination sensor and tri-axial accelerometers to measure RMS vibration, shock count, peak shock, and triggered fast-sampling (1 kHz) vibration data
- Compatible with Scientific Drilling’s mud pulse or EM MWD systems
- Can be run in stand-alone memory mode with any mud motor, RSS, or MWD system
GENERAL SPECIFICATIONS

TOOL SIZE 6.75 in (nominal), 7.5 in max @ wear bands

STABILIZER SIZE 8.25 in or 8.5 in

HOLE SIZE RANGE 8.375 in to 8.75 in (up to 9.875 in for spectral GR and sonic)

TOOL LENGTH 14.5 ft sensor collar, 32 ft w/ battery collar & saver subs

MAX DOG LEG Rotating 10°/100 ft (single stabilizer configuration) Sliding 15°/100 ft

MAX OPERATING TEMPERATURE 338°F (170°C)

MAX FLOW RATE 750 gpm

MAX PRESSURE 20,000 psi

MAX RPM 300 rpm

MAXIMUM WOB 60,000 lb

MAX TORQUE 25,000 ft-lb

MEASUREMENT SPECIFICATIONS

AZIMUTHAL SPECTRAL GAMMA RAY

<table>
<thead>
<tr>
<th>RANGE</th>
<th>REPEATABILITY@100 API and 60 ft/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL GAMMA RAY</td>
<td>0 to 1,200 API</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>0 to 20%</td>
</tr>
<tr>
<td>URANIUM</td>
<td>0 to 500 ppm</td>
</tr>
<tr>
<td>THORIUM</td>
<td>0 to 500 ppm</td>
</tr>
</tbody>
</table>

AZIMUTHAL SECTORS 32 recorded, 4 real-time

AZIMUTHAL SONIC

<table>
<thead>
<tr>
<th>RANGE</th>
<th>ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTA-T COMPRESSIONAL</td>
<td>30-270 μs/ft</td>
</tr>
<tr>
<td>DELTA-T SHEAR</td>
<td>70-270** μs/ft</td>
</tr>
</tbody>
</table>

MEASUREMENT TYPE Azimuthally focused unipole

TRANSMITTER FREQUENCY 12.5 kHz

T-R SPACINGS 48, 54, 60, 66 in

AZIMUTHAL SECTORS 16 sectors recorded; Up/Down DTC, Vert./Horiz. DTS real-time

ULTRASONIC IMAGER

MEASUREMENTS 128 sector amplitude image, 128 sector travel time & standoff, Mud slowness

STANDOFF RANGE 0 to 3 in from transducer face

STANDOFF ACCURACY ± 0.05 in

*Specifications are subject to change without notice
**Limited by mud slowness
Refer to MWD system technical data sheet for vibrational limits

For more information on improving your drilling efficiency [while staying on target] contact your Scientific Drilling sales representative or visit: http://scientificdrilling.com/LWD
MEASUREMENT APPLICATIONS

Geosteering with real-time high-precision total GR, azimuthal GR image, and KUTh.

TOC evaluation from uranium-TOC correlations.

Clay content determination in uranium-bearing shales and carbonates.

ULT azimuthal spectral gamma ray data from the Marcellus Shale.

Large variations in the total gamma ray are driven by variations in kerogen-associated uranium.

The relatively constant potassium, thorium, and uranium-stripped API gamma ray curve (SGR K+Th) suggest that the formation clay content is relatively constant, despite the large variations in total gamma ray.

The azimuthal gamma ray image shows a transition from drilling down-structure to drilling up-structure, associated with a change in wellbore inclination after the sliding interval.

MEASUREMENT APPLICATIONS

- Detection of natural, drilling-induced, and hydraulic open fractures
- Min/max stress directions from fracture orientation
- Accurate formation dip interpretation
- 360-degree borehole caliper

ULT high-resolution ultrasonic image data recorded in horizontal Permian Basin well while drilling at 400 to 500 ft/hr.

Stress-induced compressional fractures and borehole breakout are evident on the left and right sides of the hole. A group of open natural fractures can be seen between 14,846 and 14,857 ft.

MEASUREMENT APPLICATIONS

- Detection of natural, drilling-induced, and hydraulic open fractures
- Min/max stress directions from fracture orientation
- Accurate formation dip interpretation
- 360-degree borehole caliper
AZIMUTHAL SONIC

ULT sonic compressional and shear slowness logs and semblance projection.

This log was recorded on a wiper run, two days after drilling, in a vertical well in the Anadarko Basin of Oklahoma.

VTI anisotropy is evident from the separation between the faster left and right (red and green) horizontal shear slowness curves, and the slower up and down (blue and black) vertical shear slowness curves. Also note the bed boundary response of the “down” shear curve as the wellbore encounters a cleaner, faster, formation on the low side of the hole around 15,150 to 15,200 ft.

MEASUREMENT APPLICATIONS

- Formation mechanical properties (Poisson's ratio, anisotropy ratio, UCS, etc.)
- Resolve intrinsic VTI shear anisotropy from horizontal wells in shale reservoirs.
- Sonic porosity from DTC, along with gas detection and lithology determination from Vp/Vs ratio.
- Sourceless, porosity-based, geosteering from real-time up/down DTC measurements.