

DRILLING MOTOR HANDBOOK

THE ULTIMATE PARTNER IN WELLBORE PLACEMENT

Scientific Drilling International (SDI) is an independent service provider offering a complete high accuracy wellbore placement and drilling solution. We are globally positioned to support a wide range of markets including Oil & Gas, CBM/CSG, Geothermal, and Mining Industries.

We are committed to make it easy for our customers to do business, by providing exemplary service and innovative technology. We earn loyalty one job at a time. We match the right crew to each assignment, and we hold ourselves accountable to the highest standard of quality.

We provide a full suite of drilling technology and services:

- Directional Drilling
- Rotary Steerable Services
- MWD/LWD Services
- Well Planning
- Magnetic Ranging
- Survey Management
- Drilling Motor Services
- Drilling Engineering
- Wellbore Surveying
- Cased Hole Services

PREFACE

This handbook is to be used as a guideline, as it contains general information about SDI's drilling motors and industry accepted operational procedures only, and not suited for every drilling environment. It is intended to familiarize the end user about working principles of SDI's drilling motors and their specifications.

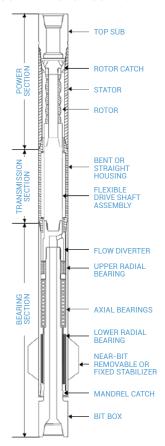
SDI is committed to continuous improvements of the drilling motors and procedures.

To view the most recent version visit: www.scientificdrilling.com/motorhandbook.

TABLE OF CONTENTS

01 INTRODUCTION	02
02 MOTOR DESCRIPTION	
Top Sub	
Rotor Catch System	07
Power Section	
Flexible Transmission	09
Bent (Transmission) Housing	09
Bearing Assembly	10
Bit Box	10
Near Bit Stabilizer	11
03 JOB PLANNING	12
Hole Size	12
Required Dogleg Severity	
Bit Selection	
Drilling Fluid	13
Hole Temperature	14
Rotor Nozzle Usage	15
Power Requirements	16
Air Drilling	16
04 MOTOR OPERATION	18
Surface Testing	
Trip In Guidelines	
Drilling Procedures	
Sliding	
Rotary Drilling	
Rotary RPM	23
Stalling	
Pressure Drop	
Incident Assessment Actions	
Trip Out Procedures	30
Lay Down Procedures	30

05 MOTOR SPECIFICATIONS	31
Graph Interpretation	31
Motor Specification Summary Table	36
TITAN22 MOTORS	
5.00" 6/7 8.0 stages	44
5.00" 6/7 10.4 stages	48
5.00" 6/7 6.6 stages	52
5.00" 7/8 5.0 stages	56
5.00" 7/8 3.8 stages	60
5.00" 7/8 3.1 stages	64
6.60" 4/5 7.0 stages	68
6.60" 7/8 5.0 stages	72
6.60" 7/8 6.4 stages	76
6.60" 7/8 3.3 stages	80
7.15"5/611.2stages	84
7.15"7/89.4 stages	88
7.15"6/77.1 stages	92
FITAN HD MOTORS	
6¾" 4/5 7.0 stages	
6¾" 7/8 5.0 stages	102
6¾"7/8 6.4 stages	106
6¾" 7/8 3.3 stages	110


06 APPENDIX	115
Talon II Adjustment Procedure	116
Shock and Vibration Limits	117
Hole Size Range per Motor Size	117
Predicted Build Rate	118
Hole Curvature Calculation	122
Formulas	124
Mud Weight	126
Nozzle Selection	127
Drill Collar Weight	128
Casing Dimensions and Bit Clearance	129
Recommended Minimum Make-up Torque	131
Rotary Shoulder Connection Interchange List	141
Heavy-Wall Drill Pipe Properties	142
Torsional Angle of Drill Pipe	143
Conversion Factors	144
Troubleshooting Charts	147

02 MOTOR DESCRIPTION

This section of the handbook is designed to provide the drillers and operators with a general description of SDI's drilling motors. Different motor configurations have varying performance characteristics, but share the same major components:

- Top Sub
- Rotor Catch Mandrel
- Power Section
- Flexible Transmission
- Bent (Transmission) Housing
- Bearing Pack Assembly
- Bit Box
- Near-Bit Stabilizers

FIGURE 1. MOTOR COMPONENTS

TOP SUB

The top sub is utilized to house the rotor catch and bored for a float. If a dump sub is present, it is primarily used to prevent tripping out with a wet drill string and can be used in place of the top sub for an additional charge.

ROTOR CATCH SYSTEM

The rotor catch system consists of components that are installed into the top portion of the motor. The function of the catch system is to minimize the possibility of losing motor components in the hole if a catastrophic failure occurs.

An external motor connection failure causes a substantial pressure loss while on-bottom. In the event of a parted motor, the Bottom Hole Assembly (BHA) is picked up off-bottom and the catch system will activate. It will hold the separated motor together and cause a pressure spike to indicate to drilling personnel that the motor may be damaged. The motor should be tripped out immediately without over-pull or string rotation to improve the chances of successfully tripping out the entire motor.

POWER SECTION

The power section components include the rotor and the stator, which converts hydraulic energy of the drilling fluid into rotational horsepower as the fluid is pumped from surface.

The rotor is a long spiral shaft designed to fit inside a corresponding stator. It is manufactured from a solid bar of stainless steel and plated with hard industrial chrome or carbide coating. The coating protects the parent metal against corrosion and reduces the friction between the rotor and the stator.

The stator is the non-rotating member of the power section. It is made out of a seamless, heat-treated tube with an elastomer lining. The internal cavity of

the liner has a spiral geometry designed to accept a rotor of compatible geometry and size. In a positive displacement power section, the rotor always has one less lobe than the stator. SDI offers specially designed elastomers to improve downhole performance.

When the rotor is inserted inside the stator, a certain number of cavities are formed along the length of the power section. The interference between the rotor and the stator lining seals these cavities. During the drilling operation, high pressure drilling fluid is forced through the cavities, causing the rotor to turn inside the stator. The geometrical characteristics of the rotor and the stator offset their longitudinal axes. In other words, the rotor has an eccentric motion inside the stator.

Power sections are categorized by size, rotor/stator lobe ratios, and the number of stages. Figure 2 (below) shows the cross-sectional view of the rotor and the stator profile with different lobe ratios.

FIGURE 2. ROTOR AND STATOR PROFILE

The following guidelines are suggested when selecting and operating any SDI motor:

- The rotational speed of the rotor is proportional to the rate of fluid flow through the power section
- The generated torque is proportional to the differential pressure across the power section
- Power sections with a higher lobe ratio generate more torque and have slower rotary speed than the ones with a lower lobe ratio. For example, a

95/8" motor with a 5/6 lobe ratio will rotate the drill bit at a higher RPM and will have less output torque per stage than a 95%" motor with a 7/8 lobe ratio

 An increase in the stage length will proportionally increase the output torque capability with a resultant slower RPM at the same flow rate

FLEXIBLE TRANSMISSION

The flexible transmission is the link between the rotor and the bearing mandrel, which converts the eccentric motion of the rotor into the smooth concentric rotary motion of the bearing mandrel. It also transmits the torque and rotary motion, generated by the power section, to the drive shaft. The hydraulic down thrust of the rotor is also transferred to the bearing section through this component.

SDI's flexible transmission is manufactured from a high grade of heat-treated alloy. The rugged design of this critical component may incorporate a seal, dependent on lower end configuration.

BENT (TRANSMISSION) HOUSING

This component of the motor houses the flexible transmission coupling and connects the stator housing to the bearing housing. A specific bend amount, ranging from zero to three degrees (0°-3°), is machined into this housing to make the motor assembly steerable.

The bent housing is manufactured using a premium grade of alloy steel. Its contact surface with the formation is hard-faced to minimize wear during the drilling operation.

An adjustable bent housing may be used in place of the fixed bent housing. The adjustable bent housing allows the operator to change the bend of the motor from zero to three degrees (0°-3°) on location.

BEARING ASSEMBLY

The main components of the bearing assembly consist of the bearing mandrel, standard roller thrust bearings and PDC thrust bearings, radial bearings, and flow diverter.

The bearing mandrel is a shaft designed to transmit the power and channel the drilling fluid to the drill bit. It is manufactured from a high grade of alloy and is heattreated for strength and toughness.

The thrust bearings are designed to sustain the weight on bit and bearing the downward hydraulic thrust load of the rotor.

The unique design of SDI's combination of PDC and standard roller thrust bearings enable the same set of bearings to carry the on-bottom as well as the off-bottom load. This important feature reduces the number of bearing races within the limited available space, reducing the bit to bend, and increasing the thrust load capacity and the life of the bearing pack.

The radial bearings rigidly support the bearing mandrel inside the bearing housing. They are designed to accept the radial forces generated during drilling, while keeping the bearing mandrel aligned and concentric with the axis of the bearing housing.

BIT BOX

The bit box is an integral part of the bearing mandrel. The outside diameter is sized to accept a specified box connection. While all external components of the motor are stationary relative to the drill string, the bit box is the only external component that has a rotary motion independent of the rotational speed of the drill string.

NEAR BIT STABILIZER

SDI motors are available with removable or integral stabilizers. The removable stabilizers are screwed on the bearing housing at our service facilities and configured to their specified torque values.

In the case clients wish to have the option of installing stabilizers on the motor at the rig site, the motor is shipped with a thread protector installed on the external threads of the bearing housing.

03 JOB PLANNING

When planning the job, it is essential to consider several factors in order to select the right motor for your specific application.

HOLE SIZE

The SDI drilling motor fleet was designed to support a wide range of hole sizes. The recommended hole size for each motor can be found in the Appendix section. We encourage consulting SDI personnel as any deviation could result in hole problems and/or cause premature motor failure.

REQUIRED DOGLEG SEVERITY

Refer to the Appendix for the predicted build rate for each size motor. The values listed in the Appendix should be used as a guideline only, since factors such as the bit type, formation characteristics, BHA configuration, Weight-On-Bit (WOB), rotary RPM, hole OD, etc., affect the actual build rate

If the motor is intended for rotary drilling, refer to rotation limit plots in the Motor Specification section.

BIT SELECTION

The proper selection of the drill bit can substantially increase the penetration rate, reduce drilling cost, and improve motor performance.

The bit's Total Flow Area (TFA) affects both motor performance and the ability to clean the hole. An undersized bit TFA will result in high-pressure drop across the bit and lower than expected flow rate. Inadequate flow rate can result in overheating and damage to the bit, hole-cleaning problems, and will starve the motor of the adequate fluid needed to operate at its optimum performance. On the other hand, an oversized TFA might not provide the fluid momentum necessary to remove the cuttings properly. The formulas required to calculate the bit TFA are provided in the Appendix. The Motor Specification section of this handbook lists the recommended bit pressure drop for each size motor. If the flow requirements needed for your specific application exceed the maximum allowable motor flow rate, a bored rotor can be provided to supply the additional fluid for some power sections.

For angle building runs, the design of the bit's gauge and length becomes critical. High drag, Polycrystalline Diamond Compact (PDC) bits exert more stress on the motor components than traditional cone or less aggressive bits. Also, high RPM motors combined with high WOB require more flow to cool the bit. Contact the bit manufacturer for the minimum recommended bit flow rate and speed.

DRILLING FLUID

The most fluid-sensitive component of the SDI motor is its stator elastomer. Therefore, it is important that the type of mud and all of its characteristics are given to the SDI representative during pre-job planning. SDI's drilling motor fleet was designed to operate successfully with water-based mud, fresh water, brine, seawater, synthetic and oil-based mud. When drilling with an oil-based mud, the aniline point of the mud must exceed the downhole static temperature to maximize the stator lining life. The mud manufacturer will be able to provide the aniline point of the mud.

The pH level of the drilling fluid can affect the life of the drilling motor. The recommended pH level is between 4 and 10 for SDI motors.

If there is a prolonged interruption in drilling, periodic circulation through the motor will increase motor life, as the stagnation of fluid inside the motor will cause deterioration.

The solid content of the drilling fluid should be maintained below 5% and the sand content below 2%. Any deviation from the specified limits will cause the bearings and elastomer lining to wear rapidly, which will result in a gradual reduction in the output power of the motor.

Mud weight is another factor that should be considered when planning the drilling operation. Generally heavier mud (12 lb/gal [14.37 kg/m3] or greater) will wear the motor at a faster rate than lighter mud. When using heavy drilling fluid, keep the sand content below 0.5% to minimize a possible washing in the drilling motor.

Any additives to the mud system should be carefully selected to comply with these specifications.

If a substantial amount of gas or air is trapped in the drilling fluid, it should be removed to prevent any possible damage to the stator rubber.

Medium to fine lost-circulation material can be used, as long as they are mixed thoroughly. If the drilling conditions require the use of coarse material, we recommend the use of jet subs above the motor to bypass a portion of the particles and prevent plugging.

The use of solid additives with rough or sharp texture should be avoided, as they have the potential to scar or cut the stator rubber lining.

HOLE TEMPERATURE

Bottom hole static temperature affects the physical and mechanical properties of the stator's elastomer. Therefore, it is important that the expected temperature range is given to the SDI representative during pre-job planning. An increase in temperature decreases the mechanical strength of the stator's rubber lining and may cause temperature related swelling.

Excessive interference increases the frictional heat generation and will over-stress the rubber compound, resulting in premature stator failure.

SDI calculates the rotor/stator interference to provide the needed power in all sections of the well based on average expected downhole temperature. Figure 3 illustrates the reduction in the tensile strength of the stator elastomer lining as the temperature increases.

Any reduction in the differential pressure of the motor while drilling will significantly increase the life of the elastomer.

POWER SECTION RATED PERFORMANCE

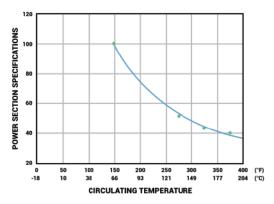


Figure 3. Temperature effects on Tensile strength

To increase the motor life, certain cautionary measures should be employed when drilling in a hot-hole environment. These measures are addressed in the Motor Operation section of the handbook.

ROTOR NO77I F USAGE

With the exception of high-speed power sections (1:2 lobe ratio), most SDI rotors are bored to allow various size nozzles. Rotor nozzles are used to increase the flow rate at the bit by directing a portion of the fluid through the rotor. The use of a rotor nozzle is recommended when system hydraulics require a flow rate that exceeds the maximum allowable flow through the motor. Refer to the Appendix for proper sizing of the nozzle.

POWER REQUIREMENTS

When selecting a motor, pay close attention to its maximum power output. The motor should be powerful enough to deliver the required amount of torque, at the right RPM, to turn the drill bit in response to the application of various WOB.

Most SDI motors are available with hard rubber in all power sections, which can increase the Rate of Penetration (ROP), decrease stalling, and drill harsh formations with more ease than a standard motor power section.

AIR DRILLING

When drilling a well using air or foam, special consideration must be taken when selecting the power section. SDI's air motors are provided in a high torque, low speed power section minimize the severity of off-bottom runaway speed that may be encountered in air drilling operations. Refer to SDI's product specification sheets for more details.

SDI recommends a non-petroleum based lubricant to be injected into the dry air at surface in order to provide lubrication to the moving parts inside the motor. On dry air, this is a best practice to keep the stator cool. The lubricant should be at least 3% soap concentration.

SDI recommends high accuracy pressure gauges that indicate 25 psi (172 kPa) increments to be fitted to surface lines. When making connections, the pressure should be allowed to bleed off, and reduce the flow rate by half when starting a motor after connections.

04 MOTOR OPERATION

This section provides a general guideline regarding the use of SDI drilling motors.

SDI's drilling motors arrive at the rig site with all internal and external connections made-up to the specified torque. The near bit stabilizer, if requested, is installed and made-up to the full recommended torque value. The bit box and top sub connections, selected by the customer, are then fitted with thread protectors. Once the drill bit is installed, the motor is ready for operation.

SURFACE TESTING

Testing tools on surface prior to use is recommended to minimize the risk of operational issues once the tool is downhole. Surface motor tests should be conducted without the bit in order to avoid potential damage.

Recommended testing procedures:

- 1. Use correct lift sub at all times. Also, ensure lift sub and drilling motor connection is sound by testing with a chain tong. Lift motor with top drive or elevators and set in slips. Safety clamps and dog collars are recommended.
- 2. Connect the motor (to top drive or kelly) after removing the lift sub. Remove the dog collar/safety clamp, then raise the motor out of the slips.
- The motor should be lowered until the bit box is just below the rotary table, with the bit box still in sight.
- Gradually begin pumping, increase the flow rate until the bit box is turning.
- 5. There should be some leakage noted coming from above the bit box.
- Gradually increase the flow rate to the minimum according to the motor specifications and record flow rate and pressure.

7. Turn flow off and check thrust bearing clearance by performing a squat thrust test. Reference Table 2 (below) for acceptable wear specifications.

Table 2 Allowable Thrust Bearing, Radial Bearing, and Coupling Wear of the Bit Box

Motor Size		ım Axial ay	Circun	ximum nferential Play		imum al Play
			TITAN H	ID		
6 3/4"	0.200"	5.08 mm	1.875"	47.63 mm	0.060"	1.52 mm
	TiTAN22					
5.00"	0.100"	2.54 mm	N/A	N.A	0.043"	1.09 mm
6.60"	0.100"	2.54 mm	N/A	N/A	0.052"	1.32 mm
7.15"	0.100"	2.54 mm	N/A	N/A	0.065"	1.65 mm

INSPECTIONS BETWEEN RUNS

- Evaluate all stabilizers for wear and damage prior to attempting another run
- Turn flow off and check thrust bearing clearance by performing a squat thrust test. Reference table 2 for acceptable wear specifications
- Drain all drilling fluid from tool by rotating bit box clockwise
- Flush the tool with fresh water or non-petroleum oil if the tool will be laid down

TRIP IN GUIDELINES

- Minimize the amount of stationary assembly time
- Descend at a controlled rate
- Trip the drill string with the blocks unlocked
- Use caution when approaching BOP, liner hanger, casing shoe, bridges, known tight spots, ledges or bottom

- Slowly ream through tight spots with maximum recommended flow rate and string rotation of 30 RPM or less
- Circulate occasionally to both avoid plugging the nozzles of the bit and when temperatures are above 250°F (121°C) to cool the BHA
- PDC bits should not be circulated for extended periods of time without WOB to avoid bit damage
- If the float valve is not used and the drill string is empty, the annulus pressure combined with the dynamic pressure, generated while tripping in will force the drilling fluid through the bit and into the motor causing the motor to rotate in reverse. This could result in unscrewing or breaking one or more internal components. It is recommended to use at least one float, and if not feasible, keep the drill string full at all times and trip in slowly. SDI recommends filling the pipe every 500 ft
- Approximately 100 ft from bottom, start pumps and trip in at a controlled speed ensuring not to spud the motor

STAGING

Motor preparation procedures for High Temperature operations

- Normal tripping in procedures should be practiced until arriving at a depth with a predicted temperature of 250°F (121°C) or greater.
- Once the measured depth with the predicted temperature is reached, break circulation to cool the BHA
- Circulate for approximately 5 min at every fill point
- Once drilling operations have begun, gradually apply differential pressure to the recommended maximum reduced differential pressure
- Refer to Power Section Rate of Performance chart

High Temperature Guidelines

High temperature wells are defined as wells with a downhole temperature above 250°F (121°C).

Motor Preparation Procedures in Cold Temperature **Operations**

- 1. It is critical to warm a motor prior to operations in cold temperatures.
- 2. Heat the entire motor, from the bit box end, using steam until it is warm to the touch.
- 3. Do not heat the motor rapidly or inconsistently to prevent internal component damage. A general practice is to heat over a 60 min period.

HOLE OD RESTRICTIONS

Use caution when motor with bent sub or non-zero angle housing travels through BOP, liner hanger, casing shoe, bridges, known tight spots, ledges or bottom

WASHING AND REAMING

Maintain flow rate above minimum requirements to clean and cool the motor bearings. It is recommended to flow as much as possible without exceeding maximum to easily identify stalls.

To avoid motor damage, limit reaming with minimal WOB, and maximum flow for which that power section has been rated.

While cleaning and backreaming, do not exceed the recommended speeds located on the rotational limit charts. Also, ensure you maintain flow rate and lower string rotation speed when working through a tight spot.

Do not backream with a motor under these circumstances:

More than 90 ft (30 m) of backreaming

- Excessive tension on the motor while backreaming may cause damage to thrust bearings and mandrel wear
- It is not recommended to rotate the motor at greater RPM or through higher doglegs than what is specified on the rotational limit chart

DRILLING PROCEDURES

- 1. Gradually increase flow rate to the desired GPM (LPM) once the bit is 6-10 ft (2-3 m) off-bottom, while not exceeding the maximum flow rate of the power section. If available, it is recommended to set the automatic drilling system to slowly tag bottom. Once the bit is 1-2 ft off-bottom ensure the WOB and differential pressure is zeroed.
- Monitor flow rate and pump pressure (side loads may affect calculated off-bottom pressure)
- Perform drill-off test to determine ideal differential pressure and WOB

SLIDING

Prior to orienting for a slide, gradually work out any drillstring torque. Orient the tool face with the consideration of the BHA reactive torque and lock the rotary table or top drive. Use caution to avoid stacking weight, which can potentially release, causing damage to the motor and loss of tool face control.

ROTARY DRILLING

All motors can be used for rotary drilling operations, with the maximum possible string RPM dependent on the bend angle.

High drillstring RPM will cause excessive bit speeds and excessive wear to the BHA. Stick slip effects can cause instantaneous BHA rotation speeds up to three times the surface RPM resulting in severe damage to downhole tools. Higher rotary speeds may be necessary in some circumstances, but the life expectancy of the motor and other downhole equipment will be reduced.

ROTARY RPM

While rotating, a lateral force is exerted on the drill bit by the formation. The magnitude of the force is directly proportional to the bit to bend length, bend angle, dog leg severity, and formation hardness. The induced bending stress on the motor increases the risk of fatigue failure. Reference rotational limit charts for string rotation speeds.

Note: When transitioning from sliding to rotating, pull back until the bit is above the slid interval. Then, using a maximum rotary RPM of 25, carefully ream back to bottom. Maintain this low RPM until the bit to bend length is drilled off.

STALLING

A stall occurs when the rotor stops rotating while the drilling fluid continues to flow through the motor. During a stall, the stator elastomer is pushed aside resulting in severe stresses within the elastomer and eventually fatigue failure of the stator as well as high stresses of the transmission and bearing section, which can result in catastrophic damage.

A short occurrence of the power section not supplying the needed torque for the bit to continue rotating is defined as a microstall, which in multiples is just as damaging as a hard stall. High WOB and rotating in large dog legs increases the chances of microstalling.

Note: Stalling during rotary drilling (over running the bit) is not as noticeable as stalling while sliding. Stalling while rotating causes more damage to the stator elastomer due to the rotor rotating in reverse while drilling fluid continues to flow through the power section.

If a stall is encountered on a Kelly drive:

- Stop rotation immediately.
- Reduce flow rate by at least 50%. 2.
- Use rotary table brake to gradually release stored torque.
- Pick off bottom slowly.
- Stage pumps back to normal operating flow rates and pressure. Monitor pressure and slowly resume drilling operations. If abnormal pressures continue, or unable to drill consult Onsite Drilling Manager and SDI personnel for confirmation to trip out. Refer to the rotor catch tripping instructions if excessive pressures are encountered.

If a stall is encountered on a Top drive:

- Stop rotation immediately.
- Reduce flow rate by at least 50%. 2.
- Lock brake on the top drive, gently hoist to string weight, and slowly release the brake on the top drive to release the trapped torque. The lower string weight will greatly reduce the trapped torque, which will lessen the backlash/whip.
- Pick bit off-bottom slowly.
- Stage pumps back to normal operating flow rates and pressure. Monitor pressure and slowly resume drilling operations. If abnormal pressures continue, or unable to drill consult Onsite Drilling Manager and Directional Coordinator for confirmation to trip out. Refer to the rotor catch tripping instructions.

PRESSURE DROP

Do not exceed maximum recommended differential pressure or circulation rates, as this will reduce the life of the stator elastomer and bearing assembly. Refer to Motor Specification section for maximums.

INCIDENT ASSESSMENT ACTIONS

The following is a list of the most commonly observed motor difficulties:

Sudden Pressure Increase

- Stalled motor
- Bit or tool plugged
- Seized bearing assembly
- Suspected rotor catch engagement

Low/No Penetration

- Worn bit
- Formation change
- Stabilizer hang up
- Damaged or worn stator elastomer

Slow Pressure Decrease

- Drill string or dump sub washout
- Lost circulation
- Well control issue

Sudden Pressure Decrease

- Back-off in the drill string or on the motor
- Fracture of the driveshaft assembly

Bit Box Does Not Spin While Circulating

- Backed-off connection
- Fracture of the driveshaft assembly
- Severe lost circulation

Bit Box Does Not Spin, Minimal Flow When Circulating

- Seized bearing assembly
- Chunked stator elastomer
- Partial plugging within the drillstring

VIBRATION

Vibration can cause the most significant motor fatigue and should be mitigated in order to avoid downhole failures.

These are the 3 types of drilling vibration:

- Torsional Vibration (Stick Slip)
- **Lateral Vibration**
- **Axial Vibration**

Beference Shock and Vibration Limitations section in the Appendix for more information.

TORSIONAL VIBRATION

Torsional vibration can be attributed to alternating speeding up and slowing down of the BHA while rotating, as the bit/formation interaction may cause the bit to stop momentarily. When the bit instantaneously stops, the drill string continues turning with increased torque, which then frees the bit to accelerate (otherwise known as bit whirl). BHA induced stick slip, which occurs when contact points become stuck, can have a similar effect. This can cause connections to back off or damage to all BHA components.

Symptoms

- Large and erratic surface RPM and torque fluctuations, especially noticeable on a top drive
- Fluctuating sound from top drive or kelly
- Cutter/insert damage; bit/stabilizers wearing under-gauge
- Poor hole cleaning, under-gauge or washed out hole
- Shock/vibration measurements received from MWD
- Connection fatigue cracks; fractures of BHA components; connection back-off

- Fractured or cracked motor drive line components such as bearing mandrels or transmissions
- Erratic increase and decrease in surface torque.
- Top drive stalling
- Increase in lateral vibrations
- Housing or connection fracture
- Chipped cutters/excessive bit wear

Solutions

- Improve the lubrication qualities of the drilling
- Adjust operating parameters (i.e. increase RPM or decrease WOB
- Pick up off-bottom and work out all drillstring torque
- Drill with less aggressive PDC bit
- Use alternative BHA components or placement

LATERAL VIBRATION (BIT/BHA WHIRL)

Lateral vibration occurs when the BHA comes into contact with the side of the wellbore. This causes drilling inefficiencies, as well as damage to BHA components.

Causes

- Harmonic resonance of drill string
- Excessive RPM and stick slip
- Low WOB with High RPM
- Lack of lubrication in mud
- Reaming/backreaming, hole opening, or drilling out of casing

Symptoms

- Poor penetration rates and higher Mechanical Specific Energy (MSE) than expected from that formation
- Damage to the bit is probably in the shoulder or randomly scattered across the body. Dull characteristics will be chipped and broken or missing cutters
- Rotary torque fluctuations

Solutions

- Pick up off-bottom and hold string stationary until all energy is released (typically a couple minutes)
- Increase WOB, reduce RPM and try to confirm with downhole measurements while drilling
- Improve the lubrication qualities of the drilling fluid

DETECTING LATERAL VIBRATIONS

- Erratic fluctuations in surface torque created by severe stick slip usually accompanies high lateral shocks
- Slower ROP

MITIGATING LATERAL VIBRATIONS

- Pick up off-bottom to work out all torque and vibration
- Change RPM or change WOB
- Modify BHA (i.e., add stabilizer)

AXIAL VIBRATION

Axial vibration, also known as "bit bounce," is caused by a cyclical loading and unloading of the bit and the BHA in the axial direction. It is characterized by rapid cyclical movement of the neutral point in the BHA that causes the WOB to quickly increase and decrease.

Causes

- Excessive RPM
- Excessive WOB with high RPM
- Erratic fluctuations of the WOB/hook load
- Visible bouncing motion of the top drive and kelly hose
- Slower Rate of Penetration (ROP)
- Excessive damage/wear to bit

Symptoms

- Large WOB fluctuations (shaking hoisting equipment)
- Damage to the bit, broken cutters on cones, particularly the outer rows
- Internal inspection of bearings may find excessive wear
- High downhole vibration as recorded MWD/LWD tool

Solutions

- Change RPM and WOB combinations to get a stable drilling situation and the MWD axial sensor will inform the directional driller that the vibration has been eliminated
- Pick up off-bottom/work out all torque
- Decrease RPM or WOB

ROTOR CATCH FUNCTIONING

The rotor catch is designed to mitigate losing a portion of the motor in the event of a housing connection failure.

If a connection back-off occurs, it must be identified quickly. Features for identification:

Pressure loss when the bit is on-bottom (due to loss of flow through housing)

- When the motor is off-bottom the standpipe pressure will increase
- With WOB reapplied, the pressure increase disappears
- BHA should not be rotated if possible
- Circulation should be kept to a minimum
- SDI's directional personnel should be present during trip out

TRIP OUT PROCEDURE

Drilling fluid will typically drain from the lower end of the bearing assembly while the motor is tripping out of hole. When tripping through high-angle curves, ensure tool face is highside. Avoid rotating drill string, which can cause damage and wear to the bit and motor.

LAY-DOWN PROCEDURES

SURFACE CHECKS BEFORE LAY-DOWN

- 1. Surface check inspection procedures should be repeated with attention paid to the functionality; bit box rotation, fluid bypass rate above the bit box, and axial and radial movement of the bottom end of the drilling motor.
- 2. A mud lubricated drilling motor lay-down review should be performed if the drilling motor is going to be rerun.
- 3. Review takes into account extreme drilling conditions and allows reuse of drilling motor based on mandatory limits, in combination with the operator's judgement.
- 4. Drain the motor by rotating the bit box.

GENERAL PRACTICE

It is important to flush the drilling motor with fresh water or non-hydrocarbon oil before laying it down. Failure to do so will allow the drilling fluid to further deteriorate components long after the drilling motor has been operated.

05 MOTOR SPECIFICATIONS

This section of the handbook provides critical information regarding the physical characteristics and performance parameters of SDI's drilling motors. They are classified as Standard, Performance and Air motors.

SDI is committed to ongoing improvements of drilling motors and procedures. As a result, the information in this handbook is subject to change without notice.

The flow rate, RPM, torque, and differential pressure correlation is presented graphically for each motor. The proper interpretation of these graphs is crucial in maintaining the specified operating limits of the motor.

HOW TO INTERPRET THE GRAPHS

Figure 1 on page 32 shows a typical graph used to determine the performance of a specific motor. Using this graph, the RPM and the output torque of the motor can be determined at a certain differential pressure.

To determine the approximate motor RPM, follow this procedure:

- 1. Locate the desired differential pressure on the corresponding axis.
- 2. From this point, draw a vertical line until it intersects the RPM curve at the desired gal/min (L/min).
- 3. From the point of intersection, draw a line perpendicular to the RPM axis to find the corresponding bit rotary speed. For example: a 61/2" SDI motor with a 7/8 lobe ratio and 5.0 stages operating at 400 psi (2,758 kPa) of differential pressure and 600 gal/min (2,271 L/min) is about 174 RPM.
- 4. The RPM graph can be extrapolated to reflect the flow rates not shown on the graph. For instance,

to determine the RPM of the motor at 525 gal/min (1.987 L/min), draw a curve, parallel to the other curves, in the mid-point between the 600 gal/min (2,271 L/min) and 450 gal/min (1,703 L/min). Use this curve to determine the motor RPM at 525 gal/min (1,987 L/min) and a certain differential pressure.

To determine the output torque of a certain motor, follow these steps:

- 1. Locate the desired differential pressure on the corresponding axis and draw a perpendicular line until it intersects the torque line.
- From the point of intersection, draw a line perpendicular to the torque axis to find the corresponding output torque. For example, a 61/2" SDI motor with a 7/8 lobe ratio and 5.0 stages operating at 400 psi (2,758 kPa) of differential pressure has an output torque of about 3,720 ft-lb (5,044 Nm).

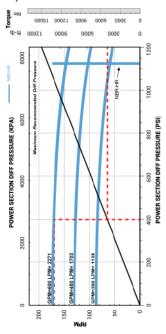
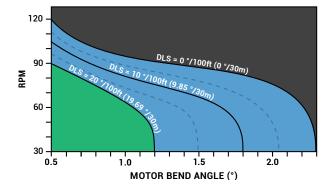



Figure 1: Performance Graph

HOW TO USE ROTATION LIMIT PLOTS

- Determine the wellbore curvature (DLS) that the motor is currently in.
- 2. Draw a vertical line from the motor bend angle value on the x-axis upwards to the appropriate DLS curve (DLS, between curves provided, should be estimated by splitting the difference between two previously drawn curves).
- 3. Draw a horizontal line from the point where the vertical line (step 2) intersects with the DLS curve, to the corresponding RPM value (y-axis) in that scenario.

EXAMPLES:

1. Basic Chart Use - A 5°/100 ft curve has been drilled with a 1.75° Motor Bend. You would then, reasonably be able to rotate at 70 RPM within at that curvature. Once you've drilled away from the base of the curve, and the bend is now in a straight and enlarged hole, the effective DLS is now 0°/100 ft and the new allowable RPM is around 84 (Refer to red dashed lines in Figure 1).

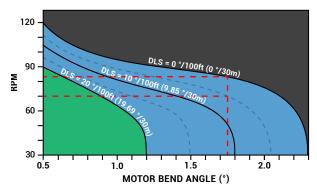


Figure 1: Illustration of Example 1

Adding a DLS Curve - A hypothetical, 8 °/100 ft, curve is drilled entirely while sliding, with a 1.9° bend in the motor. First, a DLS curve for 8°/100ft must be drawn on the figure. Understanding that 7.5°/100 ft DLS curve would be in the middle between the 5°/100 ft dashed curve and the 10°/100 ft solid curve, an 8°/100 ft curve can be placed slightly to the left of where the 7.5°/100 ft curve would go (refer to red dashed curve in Figure 2). Once the DLS curve is determined, the same procedure that was used in Example 1 can be followed to determine the RPM limits.

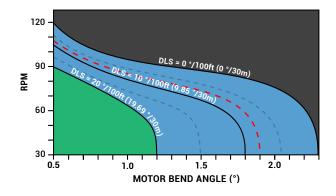


Figure 2: Illustration of Example 2

"Out of Spec" Rotation - Ex: a 20°/100ft is drilled with a 2.3° motor bend. According to the chart, rotating once you've landed this curve would be "out of spec". In this scenario, a low RPM (maximum of 30) would have to be used until the bend is effectively out of the curve and in a straight wellbore. Once in a straight wellbore, RPMs can be increased to 50 (refer to red dashed line in Figure 3).

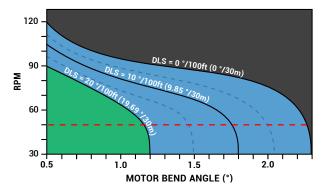


Figure 3: Illustration of Example 3

*Chart data is based on bending-moment limitations of the bent housing. The primary criteria used to establish these limit lines is the bending moment that results in the onset of shoulder separation at the bend. The plot is representative of a sustainable operation in a specific wellbore curvature (DLS). The chart only applies to slick motors and does not, in any way, attempt to predict build/ drop tendencies of the BHA. DLS lines correspond to the wellbore curvature that the motor is currently in. If a particular bend assembly is in a curve that, according to the chart, prevents rotation, then slowly rotate (30 RPM) until the motor has effectively drilled itself out of the curve. Prolonged rotation in a curve (>10 minutes) or sustained rotation rates above 30 RPM will accelerate fatigue in the motor and are considered out-of-spec operations. Configurations with stabilizers and special equipment need to be looked at on an individual basis

MOTOR SPECIFICATIONS SUMMARY TABLE

Motor Name				TiTAN22		
Motor Size	inch	5.00	5.00	5.00	5.00	5.00
(OD)	mm	127	127	127	127	127
Lobe	config	6/7	6/7	6/7	7/8	7/8
Stages	num	8.0	10.4	6.6	5.0	3.8
	ft	31.6	34.1	33.81	27.6	30.9
Length	m	9.63	10.40	10.31	8.41	9.42
Recommended	in	6-61/4	6-61/4	6-61/4	6-61/4	6-61/4
Hole Sizes	mm	152-159	152-159	152-159	152-159	152-159
Max Bend Angle	deg	2.38°	2.38°	2.38°	2.38°	2.38°
Bit to Bend	in	40.6	40.6	40.6	40.6	40.6
Length	m	1.03	1.03	1.03	1.03	1.03
Bit Box Connection	API Reg Box	3½	31/2	31/2	3½	3½
Max	lbs	30,000	30,000	30,000	30,000	30,000
WOB	DaN	13,345	13,345	13,345	13,345	13,345
Max Overpull	lbs	60,000	60,000	60,000	60,000	60,000
for Rerun	DaN	26,689	26,689	26,689	26,689	26,689
Overpull to	lbs	120,000	120,000	120,000	120,000	120,000
Yield Motor	DaN	53,379	53,379	53,379	53,379	53,379
Max Bit	psi	750	750	750	750	750
Pressure Drop	kPa	5,171	5,171	5,171	5,171	5,171
Opt Bit	psi	100-600	100-600	100-600	100-600	100-600
Pressure Drop	kPa	690-4,136	690-4,136	690-4,136	690-4,136	690-4,136
LCM Capability	nut plug	40 lb				
Max Differential	psi	1,800	2,340	1,560	1,130	860
Pressure	kPa	12,410	16,130	10,700	7,760	5,900
Stall Differential	psi	2,700	3,510	2,450	1,690	1,280
Pressure	kPa	18,620	24,200	16,900	11,630	8,840
Torque at Max	ft-lbs	5,720	8,610	8,550	4,460	4,450
Diff Pressure	Nm	7,760	11,680	11,600	6,040	6,030
Stall	ft-lbs	8,580	12,920	13,460	6,680	6,670
Torque	Nm	11,630	17,520	18,300	9,060	9,050
Flow Range	gal/min	150-330	225-425	200-425	100-275	150-250
	L/min	570-1,249	852-1,608	760-1,608	378-1,040	570-950
Speed Range	RPM	121-290	157-300	90-180	64-180	78-140
Speed	rev/gal	0.81	0.70	0.46	0.64	0.52
Ratio	rev/L	0.21	0.19	0.12	0.17	0.14
Torque	ft-lb/psi	3.12	3.68	5.51	3.96	5.20
Slope	Nm/kPa	0.62	0.72	1.08	0.78	1.02

MOTOR SPECIFICATIONS SUMMARY TABLE

Motor Name				TiTAN22		
Motor Size (OD)	inch	5.00	6.60	6.60	6.60	6.60
	mm	127	168	168	168	168
Lobe	config	7/8	4/5	7/8	7/8	7/8
Stages	num	3.1	7.0	5.0	6.4	3.3
Length	ft	30.9	31.3	29.6	33.8	33.8
Length	m	9.42	9.54	9.02	10.3	10.3
Recommended	in	6-61/4	71/8-83/4	77/8-83/4	77/8-83/4	77/8-83/4
Hole Sizes	mm	152-159	200-222	200-222	200-222	200-222
Max Bend Angle	deg	2.38°	2.38°	2.38°	2.38°	2.38°
Bit to Bend	in	40.6	49	49	49	49
Length	m	1.03	1.2	1.2	1.2	1.2
Bit Box Connection	API Reg Box	3½	41/2	41/2	41/2	41/2
Max	lbs	30,000	60,000	60,000	60,000	60,000
WOB	DaN	13,345	26,689	26,689	26,689	26,689
Max Overpull	lbs	60,000	105,000	105,000	105,000	105,000
for Rerun	DaN	26,689	46,706	46,706	46,706	46,706
Overpull to	lbs	120,000	210,000	210,000	210,000	210,000
Yield Motor	DaN	53,379	93,413	93,413	93,413	93,413
Max Bit	psi	750	1,000	1,000	1,000	1,000
Pressure Drop	kPa	5,171	6,894	6,894	6,894	6,894
Opt Bit	psi	100-600	100-750	100-750	100-750	100-750
Pressure Drop	kPa	690-4,136	690-5,171	690-5,171	690-5,171	690-4,136
LCM Capability	nut plug	40 lb	40 lb	40 lb	40 lb	40 lb
Max Differential	psi	700	1,580	1,130	1,440	740
Pressure	kPa	4,810	10,860	7,760	9,930	5,120
Stall Differential	psi	1,050	2,360	1,690	2,160	1,110
Pressure	kPa	7,210	16,290	11,630	14,890	7,680
Torque at Max	ft-lbs	5,460	9,090	10,460	13,390	14,110
Diff Pressure	Nm	7,410	12,330	14,190	18,160	19,130
Stall	ft-lbs	8,190	13,630	15,690	20,090	21,160
Torque	Nm	11,110	18,490	21,280	27,240	28,690
Flow	gal/min	150-300	300-600	300-600	300-600	300-600
Range	L/min	570-1,140	1,140-2,270	1,140-2,270	1,140-2,270	1,140-2,270
Speed Range	RPM	47-95	149-300	86-180	86-180	42-84
Speed	rev/gal	0.32	0.50	0.29	0.29	0.14
Ratio	rev/L	0.08	0.13	0.08	0.08	0.04
Torque	ft-lb/psi	7.83	5.77	9.30	9.30	19.00
Slope	Nm/kPa	1.54	1.14	1.83	1.83	3.74

MOTOR SPECIFICATIONS SUMMARY TABLE

Motor Name			TiTAN22		Titaı	n HD
Motor Size	inch	7.15	7.15	7.15	6 ³ / ₄	6 3/4
(OD)	mm	181	181	181	175.3	175.3
Lobe	config	5/6	7/8	6/7	4/5	7/8
Stages	num	11.2	9.4	7.1	7.0	5.0
	ft	38	38	38	31.3	25.9
Length	m	11.52	11.52	11.52	9.54	7.9
Recommended	in	81/2-97/8	81/2-97/8	81/2-97/8	77/8-83/4	81/2-97/8
Hole Sizes	mm	216-251	216-251	216-251	200-222	216-251
Max Bend Angle	deg	2.12	2.12	2.12	2.38°	2.5°
Bit to Bend	in	52	52	52	49	54
Length	m	1.3	1.3	1.3	1.2	1.37
Bit Box Connection	API Reg Box	41/2	41/2	41/2	41/2	41/2
Max	lbs	60,000	60,000	60,000	60,000	50,000
WOB	DaN	26,689	26,689	26,689	26,689	22,241
Max Overpull	lbs	110,000	110,000	110,000	105,000	105,000
for Rerun	DaN	26,689	26,689	26,689	46,706	46,706
Overpull to	lbs	240,000	240,000	240,000	210,000	210,000
Yield Motor	DaN	106,757	106,757	106,757	93,413	93,413
Max Bit	psi	1,000	1,000	1,000	1,000	1,000
Pressure Drop	kPa	6,894	6,894	6,894	6,894	6,894
Opt Bit	psi	100-750	100-750	100-750	100-750	100-750
Pressure Drop	kPa	690-5,171	690-5,171	690-5,171	690-5,171	690-5,171
LCM Capability	nut plug	40 lb	40 lb	40 lb	40 lb	40 lb
Max Differential	psi	2,520	2,120	1,670	1,580	1,130
Pressure	kPa	17,374	14,580	11,600	10,860	7,760
Stall Differential	psi	3,780	3,170	2,630	2,360	1,690
Pressure	kPa	26,062	21,870	18,200	16,290	11,630
Torque at Max	ft-lbs	16,420	18,680	18,230	9,090	10,460
Diff Pressure	Nm	22,260	25,330	24,800	12,330	14,190
Stall	ft-lbs	24,630	28,020	28,700	13,630	15,690
Torque	Nm	33,390	37,990	39,000	18,490	21,280
Flow	gal/min	500-750	500-750	500-750	300-600	300-600
Range	L/min	1,890-2,840	1,890-2,840	1,890-2,840	1,140-2,270	1,140-2,270
Speed Range	RPM	180-300	144-220	115-170	149-300	86-180
Speed	rev/gal	0.40	0.29	0.23	0.49	0.29
Ratio	rev/L	0.11	0.08	0.06	0.13	0.08
Torque	ft-lb/psi	6.52	8.32	10.92	5.77	9.30
Slope	Nm/kPa	1.28	1.73	2.15	1.14	1.83

MOTOR SPECIFICATIONS SUMMARY TABLE

Motor Name		Titan	HD
	inch	6 ³ / ₄	6 ³ / ₄
Motor Size (OD)	mm	175.3	175.3
Lobe	config	7/8	7/8
Stages	num	6.4	3.3
Stages	ft	30.1	33.8
Length	m	9.18	10.3
Recommended Hole Sizes	in	81/2-97/8	77/8-83/4
	mm	216-251	200-222
Max Bend Angle	deg	2.5°	2.38°
Bit to Bend	in	54	49
Length	m	1.4	1.2
Bit Box Connection	API Reg Box	41/2	41/2
Max	lbs	60,000	60,000
WOB	DaN	26,689	26,689
Max Overpull	lbs	105,000	105,000
for Rerun	DaN	46,706	46,706
Overpull to	lbs	210,000	210,000
Yield Motor	DaN	93,413	93,413
Max Bit	psi	1,000	1,000
Pressure Drop	kPa	6,894	6,894
Opt Bit	psi	100-750	100-750
Pressure Drop	kPa	690-5,171	690-4,136
LCM Capability	nut plug	40 lb	40 lb
Max Differential	psi	1,440	740
Pressure	kPa	9,930	5,120
Stall Differential	psi	2,160	1,110
Pressure	kPa	14,890	7,680
Torque at Max	ft-lbs	13,390	14,110
Diff Pressure	Nm	18,160	19,130
Stall	ft-lbs	20,090	21,160
Torque	Nm	27,240	28,690
Flow	gal/min	300-600	300-600
Range	L/min	1,140-2,270	1,140-2,270
Speed Range	RPM	86-180	42-84
Speed	rev/gal	0.29	0.14
Ratio	rev/L	0.08	0.04
Tarrica	ft-lb/psi	9.30	19
Torque Slope	Nm/kPa	1.83	3.74

MOTOR
SPECIFICATIONS
&
PERFORMANCE
GRAPHS

TITAN22 | PERFORMANCE DRILLING MOTOR

Scientific Drilling's TiTAN22 performance drilling motor is designed for the most extreme drilling environments in the industry. It has been engineered to run with the highest torque power sections, delivering ultimate reliability and durability in all sections of the well.

The TiTAN22 also features a unique Ti-Flex™ Titanium Flex Shaft and bearing pack assembly to deliver optimal performance in a wide range of applications.

DELIVERING THE ULTIMATE VALUE

- Enhanced WOB capacity, supporting increased and consistent ROP for superior drilling performance
- Rugged driveline design for ultra-high power torque sections, delivering maximized reliability
- · Full rotational capabilities in all sections of the well, ensuring optimal wellbore integrity
- Innovative Ti-Flex™ Titanium Flex Shaft and bearing assembly for increased durability and extended tool life

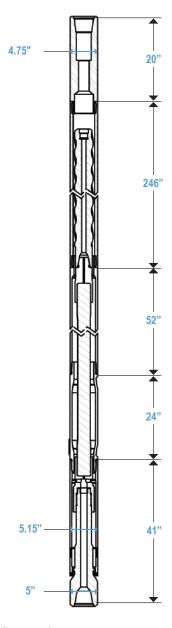
TARGET APPLICATIONS

- · Performance Drilling
- Extended Reach Laterals
- · Factory Drilling in Shale Reservoirs
- One Run Applications
- Laminated Formations

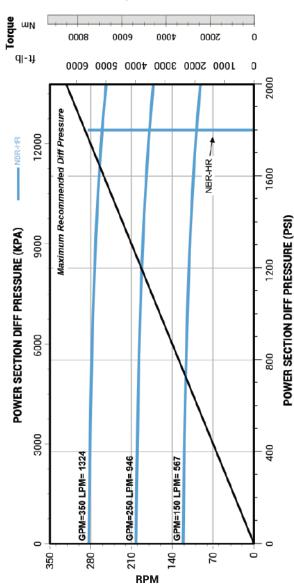
TOOL RENDERING

TITAN22 | PERFORMANCE DRILLING MOTOR

TiTAN22 | 5.00" 6/7 8.0


GENERAL SPECIFICATIONS				
OD	5.00 in (127 mm)			
Length	31.6 ft (9.63 m)			
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)			
Max Bend Angle	2.38°			

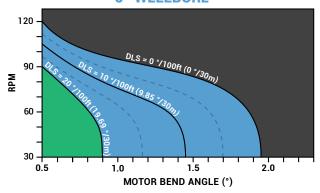
BEARING SECTION					
Bit to Bend Length	40.6 in (1.031 m)				
Bit Box Connection	3½ API Reg.				
Max WOB	30,000 lbs (13,345 DaN)				
Max Overpull for Rerun	60,000 lbs (26,689 DaN)				
Overpull to Yield Motor	120,000 lbs (53,379 DaN)				
Max Bit Pressure Drop	750 psi (5,171 kPa)				
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)				
LCM Capability	40 lb nut plug				


POWE	R SECTION
Lobe Configuration	6/7
Stages	8.0
Max Differential Pressure	1,800 psi (12,410 kPa)
Stall Differential Pressure	2,700 psi (18,620 kPa)
Torque at Max Diff Pressure	5,720 ft-lbs (7,760 Nm)
Stall Torque	8,580 ft-lbs (11,630 Nm)
Flow Range	150 - 330 gal/min (570 - 1,249 L/min)
Speed Range	121-290 RPM
Speed Ratio	0.81 rev/gal (0.21 rev/L)
Torque Slope	3.12 ft-lb/psi (0.62 Nm/kPa)

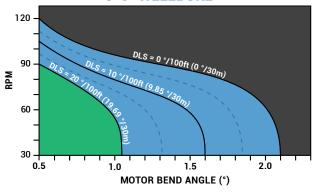
GENERAL DIMENSIONS

TiTAN22 | 5.00" 6/7 8.0

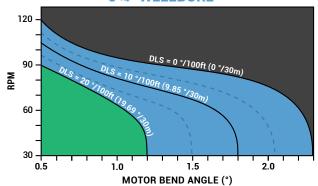
TiTAN22 | 5.00" 6/7 8.0


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

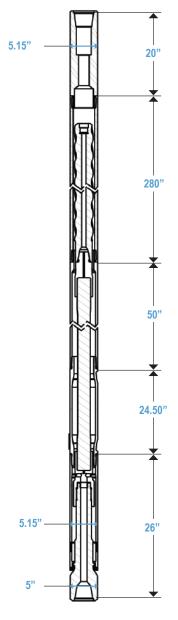
TiTAN22 | 5.00"



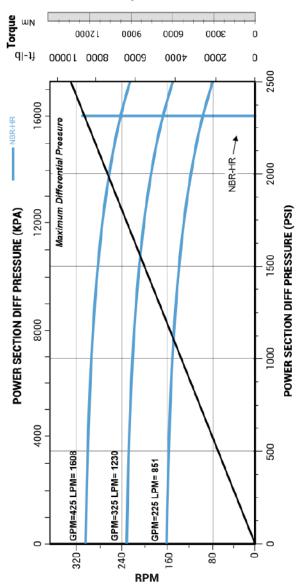
6 1/8" WELLBORE

6 4" WELLBORE

TiTAN22 | 5.00" 6/7 10.4


GENERAL SPECIFICATIONS				
OD	5.00 in (127 mm)			
Length	34.11 ft (10.40 m)			
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)			
Max Bend Angle	2.38°			

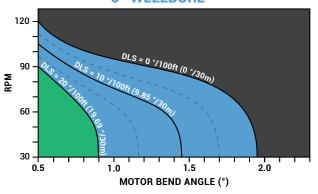
BEARING SECTION	
Bit to Bend Length	40.6 in (1.031 m)
Bit Box Connection	3½ API Reg.
Max WOB	30,000 lbs (13,345 DaN)
Max Overpull for Rerun	60,000 lbs (26,689 DaN)
Overpull to Yield Motor	120,000 lbs (53,379 DaN)
Max Bit Pressure Drop	750 psi (5,171 kPa)
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)
LCM Capability	40 lb nut plug


POWER SECTION	
Lobe Configuration	6/7
Stages	10.4
Max Differential Pressure	2,340 psi (16,130 kPa)
Stall Differential Pressure	3,510 psi (24,200 kPa)
Torque at Max Diff Pressure	8,610 ft-lbs (11,680 Nm)
Stall Torque	12,920 ft-lbs (17,520 Nm)
Flow Range	225 - 425 gal/min (852 - 1,608 L/min)
Speed Range	157 - 300 RPM
Speed Ratio	0.70 rev/gal (0.19 rev/L)
Torque Slope	3.68 ft-lb/psi (0.72 Nm/kPa)

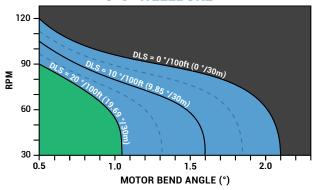
GENERAL DIMENSIONS

TiTAN22 | 5.00" 6/7 10.4

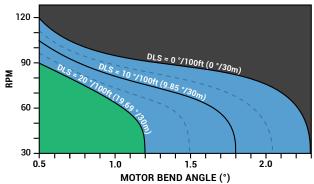
TiTAN22 | 5.00" 6/7 10.4


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

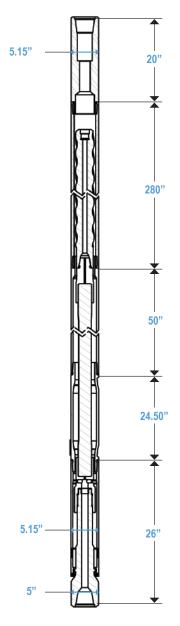
TiTAN22 | 5.00"


6" WELLBORE

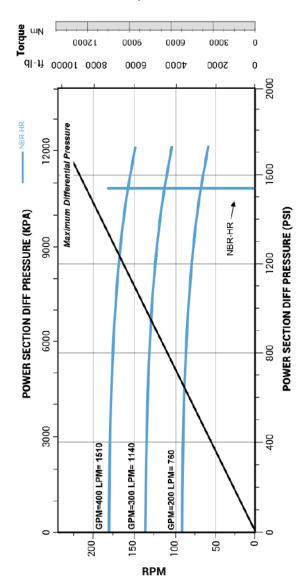
6 1/8" WELLBORE

6 4" WELLBORE

TiTAN22 | 5.00" 6/7 6.6


GENERAL SPECIFICATIONS	
OD	5.00 in (127 mm)
Length	33.81 ft (10.31 m)
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)
Max Bend Angle	2.38°

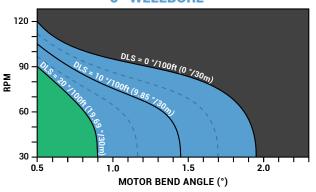
BEARING SECTION	
Bit to Bend Length	40.6 in (1.031 m)
Bit Box Connection	3½ API Reg.
Max WOB	30,000 lbs (13,345 DaN)
Max Overpull for Rerun	60,000 lbs (26,689 DaN)
Overpull to Yield Motor	120,000 lbs (53,379 DaN)
Max Bit Pressure Drop	750 psi (5,171 kPa)
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)
LCM Capability	40 lb nut plug


POWER SECTION	
Lobe Configuration	6/7
Stages	6.6
Max Differential Pressure	1,560 psi (10,700 kPa)
Stall Differential Pressure	2,450 psi (16,900 kPa)
Torque at Max Diff Pressure	8,550 ft-lbs (11,600 Nm)
Stall Torque	13,460 ft-lbs (18,300 Nm)
Flow Range	200 - 425 gal/min (760 - 1,608 L/min)
Speed Range	90 - 180 RPM
Speed Ratio	0.46 rev/gal (0.12 rev/L)
Torque Slope	5.51 ft-lb/psi (1.08 Nm/kPa)

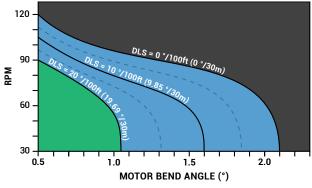
GENERAL DIMENSIONS

TiTAN22 | 5.00" 6/7 6.6

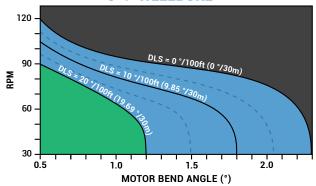
TiTAN22 | 5.00" 6/7 6.6


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

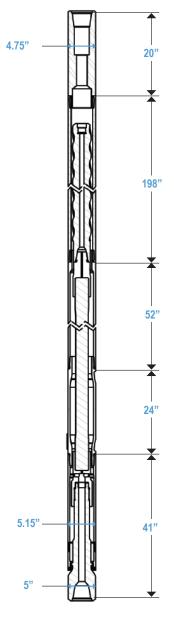
TiTAN22 | 5.00"


6" WELLBORE

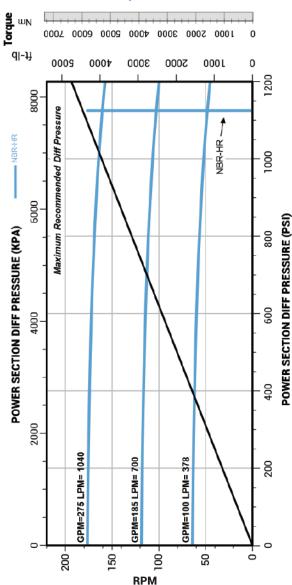
6 1/8" WELLBORE

6 4" WELLBORE

TiTAN22 | 5.00" 7/8 5.0


GENERAL SPECIFICATIONS	
OD	5.00 in (127 mm)
Length	27.6 ft (8.41 m)
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)
Max Bend Angle	2.38°

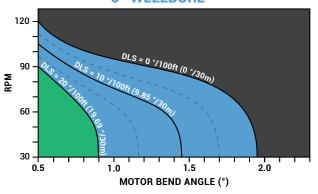
BEARING SECTION	
Bit to Bend Length	40.6 in (1.031 m)
Bit Box Connection	3½ API Reg.
Max WOB	30,000 lbs (13,345 DaN)
Max Overpull for Rerun	60,000 lbs (26,689 DaN)
Overpull to Yield Motor	120,000 lbs (53,379 DaN)
Max Bit Pressure Drop	750 psi (5,171 kPa)
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)
LCM Capability	40 lb nut plug


POWER SECTION	
Lobe Configuration	7/8
Stages	5.0
Max Differential Pressure	1,130 psi (7,760 kPa)
Stall Differential Pressure	1,690 psi (11,630 kPa)
Torque at Max Diff Pressure	4,460 ft-lbs (6,040 Nm)
Stall Torque	6,680 ft-lbs (9,060 Nm)
Flow Range	100 - 275 gal/min (378 - 1,040 L/min)
Speed Range	64 - 180 RPM
Speed Ratio	0.64 rev/gal (0.17 rev/L)
Torque Slope	3.96 ft-lb/psi (0.78 Nm/kPa)

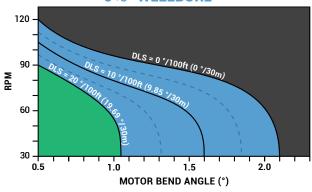
GENERAL DIMENSIONS

TiTAN22 | 5.00" 7/8 5.0

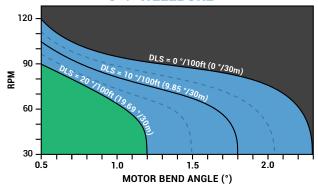
TiTAN22 | 5.00" 7/8 5.0


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

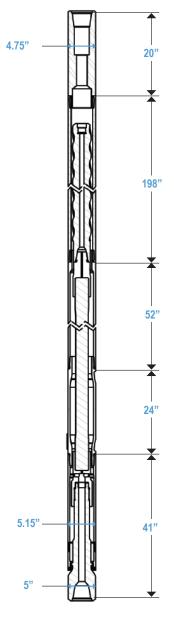
TiTAN22 | 5.00"


6" WELLBORE

6 1/8" WELLBORE

6 4" WELLBORE

TiTAN22 | 5.00" 7/8 3.8


GENERAL SPECIFICATIONS	
OD	5.00 in (127 mm)
Length	30.9 ft (9.42 m)
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)
Max Bend Angle	2.38°

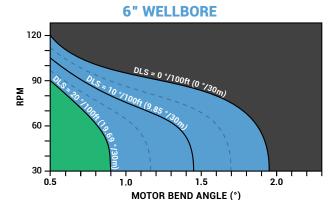
BEARING SECTION	
Bit to Bend Length	40.6 in (1.031 m)
Bit Box Connection	3½ API Reg.
Max WOB	30,000 lbs (13,345 DaN)
Max Overpull for Rerun	60,000 lbs (26,689 DaN)
Overpull to Yield Motor	120,000 lbs (53,379 DaN)
Max Bit Pressure Drop	750 psi (5,171 kPa)
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)
LCM Capability	40 lb nut plug

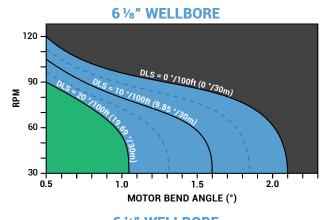

POWER SECTION	
Lobe Configuration	7/8
Stages	3.8
Max Differential Pressure	860 psi (5,900 kPa)
Stall Differential Pressure	1,280 psi (8,840 kPa)
Torque at Max Diff Pressure	4,450 ft-lbs (6,030 Nm)
Stall Torque	6,670 ft-lbs (9,050 Nm)
Flow Range	150 - 250 gal/min (570 - 950 L/min)
Speed Range	78 - 140 RPM
Speed Ratio	0.52 rev/gal (0.14 rev/L)
Torque Slope	5.20 ft-lb/psi (1.02 Nm/kPa)

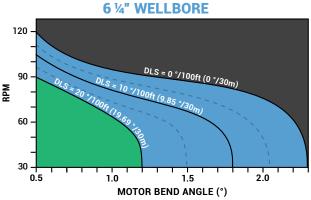
GENERAL DIMENSIONS

TiTAN22 | 5.00" 7/8 3.8

TiTAN22 | 5.00" 7/8 3.8



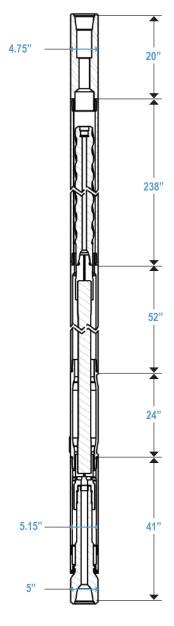

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.

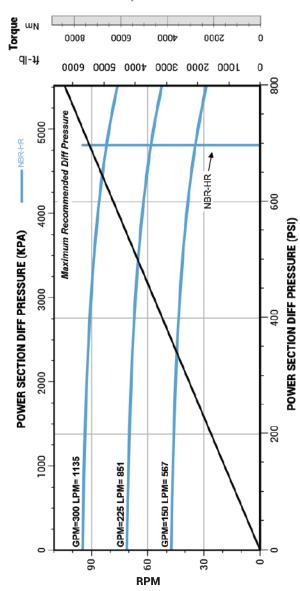
ROTATIONAL LIMIT

TiTAN22 | 5.00"

TiTAN22 | 5.00" 7/8 3.1


GENERAL SPECIFICATIONS	
OD	5.00 in (127 mm)
Length	30.9 ft (9.42 m)
Recommended Hole Sizes	6 - 6 ¹ / ₄ in (152 - 159 mm)
Max Bend Angle	2.38°

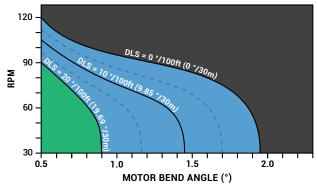
BEARING SECTION	
Bit to Bend Length	40.6 in (1.031 m)
Bit Box Connection	3½ API Reg.
Max WOB	30,000 lbs (13,345 DaN)
Max Overpull for Rerun	60,000 lbs (26,689 DaN)
Overpull to Yield Motor	120,000 lbs (53,379 DaN)
Max Bit Pressure Drop	750 psi (5,171 kPa)
Opt Bit Pressure Drop	100 - 600 psi (690 - 4,136 kPa)
LCM Capability	40 lb nut plug


POWER SECTION		
Lobe Configuration	7/8	
Stages	3.1	
Max Differential Pressure	700 psi (4,810 kPa)	
Stall Differential Pressure	1,050 psi (7,210 kPa)	
Torque at Max Diff Pressure	5,460 ft-lbs (7,410 Nm)	
Stall Torque	8,190 ft-lbs (11,110 Nm)	
Flow Range	150 - 300 gal/min (570 - 1,140 L/min)	
Speed Range	47 - 95 RPM	
Speed Ratio	0.32 rev/gal (0.08 rev/L)	
Torque Slope	7.83 ft-lb/psi (1.54 Nm/kPa)	

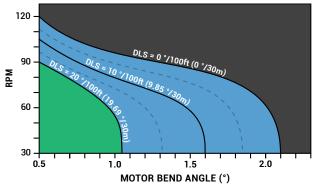
GENERAL DIMENSIONS

TiTAN22 | 5.00" 7/8 3.1

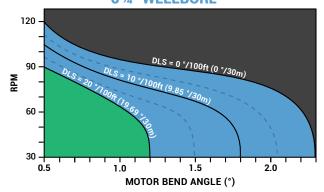
TiTAN22 | 5.00" 7/8 3.1


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

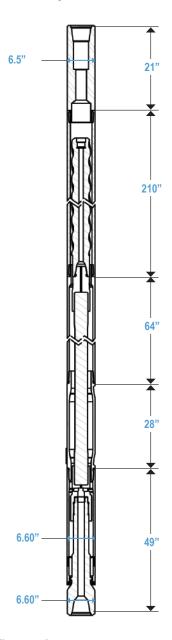
TiTAN22 | 5.00"



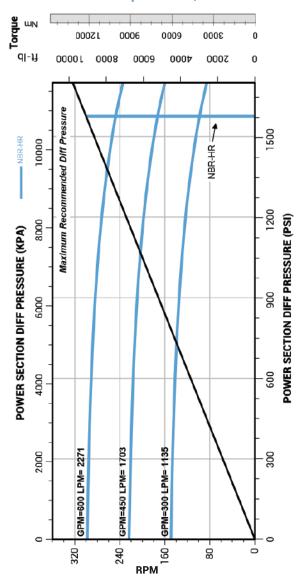
6 1/8" WELLBORE

6 4" WELLBORE

TiTAN22 | 6.60" 4/5 7.0


GENERAL SPECIFICATIONS	
OD	6.60 in (168 mm)
Length	31.3 ft (9.54 m)
Recommended Hole Sizes	7 ⁷ / ₈ - 8 ³ / ₄ in (200 - 222 mm)
Max Bend Angle	2.38°

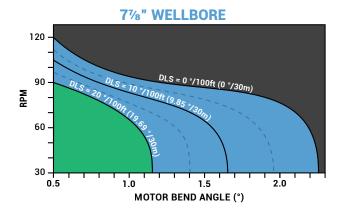
BEARING SECTION	
Bit to Bend Length	49 in (1.244 m)
Bit Box Connection	4½ API Reg.
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

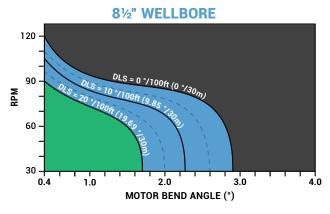

POWER SECTION	
Lobe Configuration	4/5
Stages	7.0
Max Differential Pressure	1,580 psi (10,860 kPa)
Stall Differential Pressure	2,360 psi (16,290 kPa)
Torque at Max Diff Pressure	9,090 ft-lbs (12,330 Nm)
Stall Torque	13,630 ft-lbs (18,490 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	149 - 300 RPM
Speed Ratio	0.50 rev/gal (0.13 rev/L)
Torque Slope	5.77 ft-lb/psi (1.14 Nm/kPa)

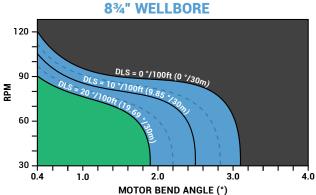
GENERAL DIMENSIONS

TiTAN22 | 6.60" 4/5 7.0

TiTAN22 | 6.60" 4/5 7.0



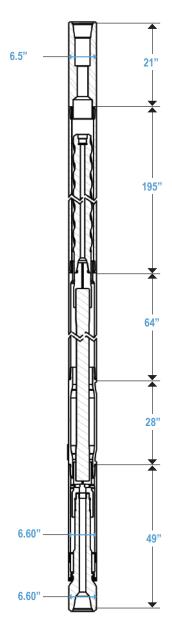

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.

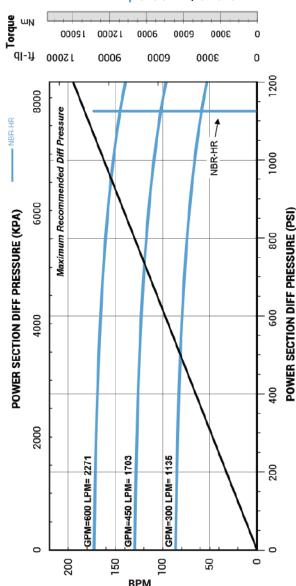
ROTATIONAL LIMIT

TiTAN22 | 6.60"

TiTAN22 | 6.60" 7/8 5.0


GENERAL SPECIFICATIONS	
OD	6.60 in (168 mm)
Length	29.6 ft (9.02 m)
Recommended Hole Sizes	7 ⁷ / ₈ - 8 ³ / ₄ in (200 - 222 mm)
Max Bend Angle	2.38°

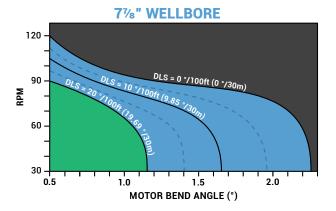
BEARING SECTION	
Bit to Bend Length	49 in (1.244 m)
Bit Box Connection	4½ API Reg.
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

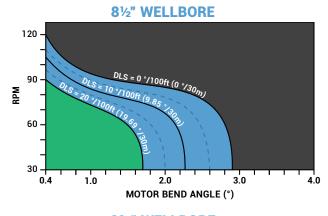

POWER SECTION	
Lobe Configuration	7/8
Stages	5.0
Max Differential Pressure	1,130 psi (7,760 kPa)
Stall Differential Pressure	1,690 psi (11,630 kPa)
Torque at Max Diff Pressure	10,460 ft-lbs (14,190 Nm)
Stall Torque	15,690 ft-lbs (21,280 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	86 - 180 RPM
Speed Ratio	0.29 rev/gal (0.08 rev/L)
Torque Slope	9.30 ft-lb/psi (1.83 Nm/kPa)

GENERAL DIMENSIONS

TiTAN22 | 6.60" 7/8 5.0

TiTAN22 | 6.60" 7/8 5.0



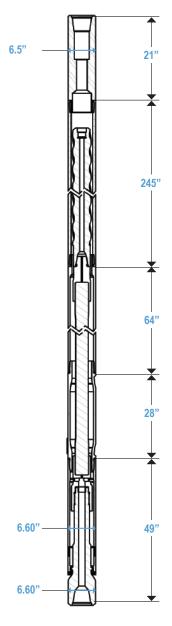

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.

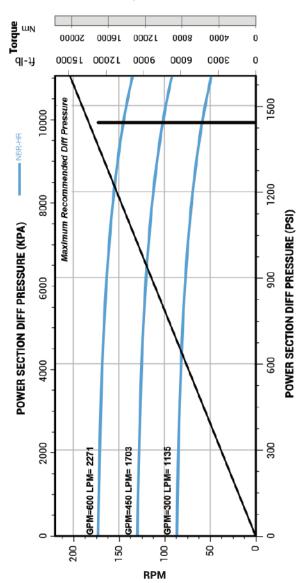
ROTATIONAL LIMIT

TiTAN22 | 6.60"

TiTAN22 | 6.60" 7/8 6.4


GENERAL SPECIFICATIONS	
OD	6.60 in (168 mm)
Length	33.8 ft (10.3 m)
Recommended Hole Sizes	7 ⁷ / ₈ - 8 ³ / ₄ in (200 - 222 mm)
Max Bend Angle	2.38°

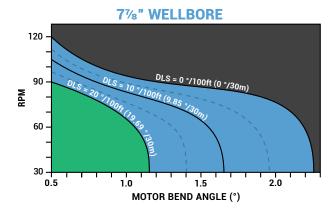
BEARING SECTION	
Bit to Bend Length	49 in (1.244 m)
Bit Box Connection	4½ API Reg.
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

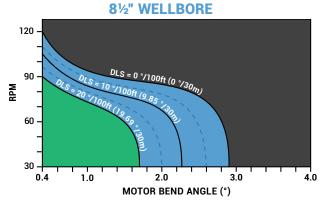

POWER SECTION	
Lobe Configuration	7/8
Stages	6.4
Max Differential Pressure	1,440 psi (9,930 kPa)
Stall Differential Pressure	2,160 psi (14,890 kPa)
Torque at Max Diff Pressure	13,390 ft-lbs (18,160 Nm)
Stall Torque	20,090 ft-lbs (27,240 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	86 - 180 RPM
Speed Ratio	0.29 rev/gal (0.08 rev/L)
Torque Slope	9.30 ft-lb/psi (1.83 Nm/kPa)

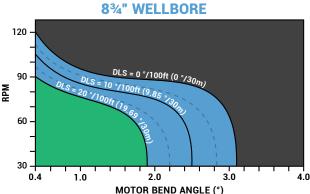
GENERAL DIMENSIONS

TiTAN22 | 6.60" 7/8 6.4

TiTAN22 | 6.60" 7/8 6.4



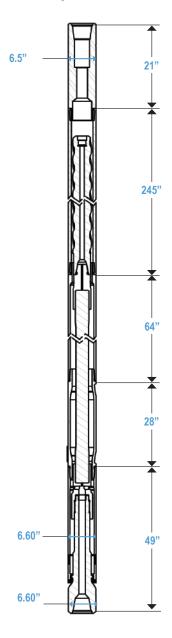

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.

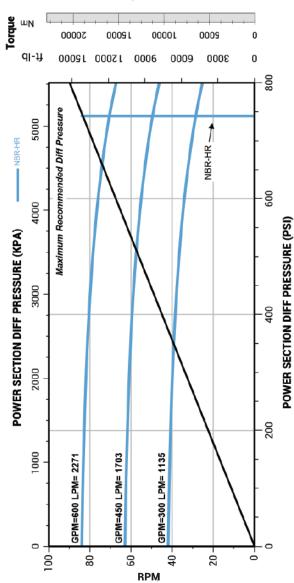
ROTATIONAL LIMIT

TiTAN22 | 6.60"

TiTAN22 | 6.60" 7/8 3.3


GENERAL SPECIFICATIONS	
OD	6.60 in (168 mm)
Length	33.8 ft (10.3 m)
Recommended Hole Sizes	7 ⁷ / ₈ - 8 ³ / ₄ in (200 - 222 mm)
Max Bend Angle	2.38°

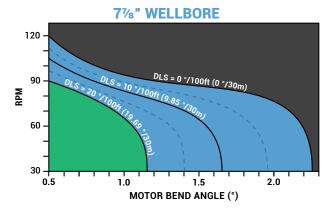
BEARING SECTION	
Bit to Bend Length	49 in (1.244 m)
Bit Box Connection	4½ API Reg.
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

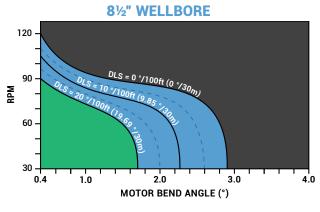

POWER SECTION	
Lobe Configuration	7/8
Stages	3.3
Max Differential Pressure	740 psi (5,120 kPa)
Stall Differential Pressure	1,110 psi (7,680 kPa)
Torque at Max Diff Pressure	14,110 ft-lbs (19,130 Nm)
Stall Torque	21,160 ft-lbs (28,690 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	42 - 84 RPM
Speed Ratio	0.14 rev/gal (0.04 rev/L)
Torque Slope	19.00 ft-lb/psi (3.74 Nm/kPa)

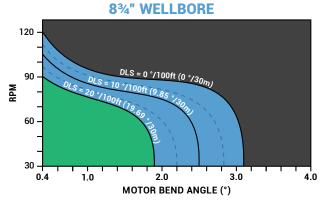
GENERAL DIMENSIONS

TiTAN22 | 6.60" 7/8 3.3

TiTAN22 | 6.60" 7/8 3.3



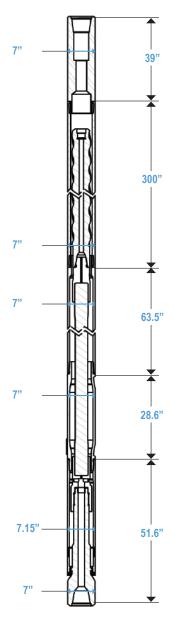

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.

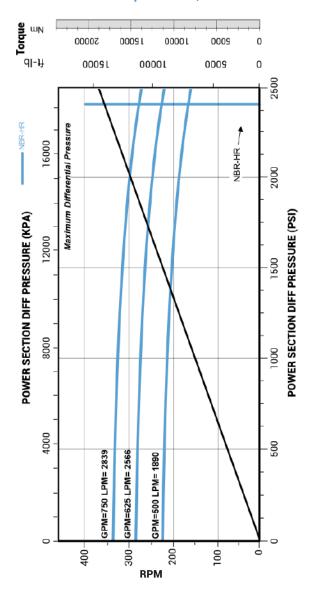
ROTATIONAL LIMIT

TiTAN22 | 6.60"

TiTAN22 | 7.15" 5/6 11.2


GENERAL SPECIFICATIONS	
OD	7.15 in (181 mm)
Length	38 ft (11.52 m)
Recommended Hole Sizes	8 1/2 - 9 7/8 in (215 - 250 mm)
Max Bend Angle	2.12°

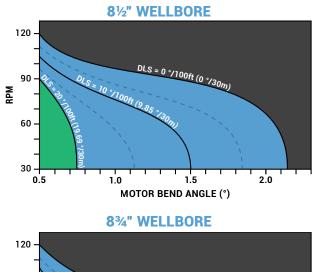
BEARING SECTION	
Bit to Bend Length	52 in (1.3 m)
Bit Box Connection	4½ in API Reg. Box
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	110,000 lbs (48,930 DaN)
Overpull to Yield Motor	240,000 lbs (106,757 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

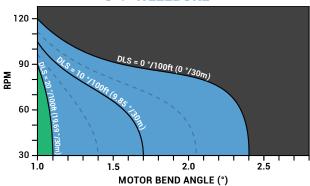

POWER SECTION	
Lobe Configuration	5/6
Stages	11.2
Max Differential Pressure	2,520 psi (17,374 kPa)
Stall Differential Pressure	3,780 psi (26,060 kPa)
Torque at Max Diff Pressure	16,420 ft-lbs (22,260 Nm)
Stall Torque	24,630 ft-lbs (33,393 Nm)
Flow Range	500-750 gal/min (1,890 - 2,840 L/min)
Speed Range	180 - 300 RPM
Speed Ratio	0.40 rev/gal (0.11 rev/L)
Torque Slope	6.52 ft-lb/psi (1.28 Nm/kPa)

GENERAL DIMENSIONS

TiTAN22 | 7.15" 5/6 11.2

TiTAN22 | 7.15" 5/6 11.2



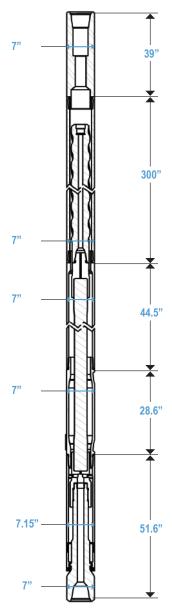

*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.

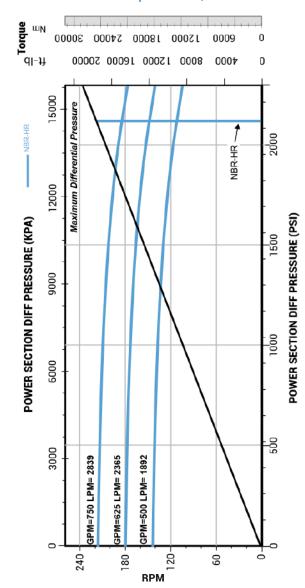
ROTATIONAL LIMIT

TiTAN22 | 7.15"

TiTAN22 | 7.15" 7/8 9.4


GENERAL SPECIFICATIONS	
OD	7.15 in (181 mm)
Length	38 ft (11.52 m)
Recommended Hole Sizes	8 1/2 - 9 7/8 in (215 - 250 mm)
Max Bend Angle	2.12°

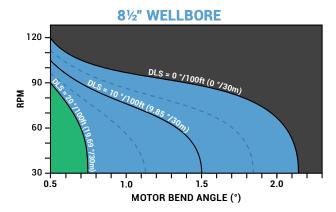
BEARING SECTION	
Bit to Bend Length	52 in (1.3 m)
Bit Box Connection	4½ in API Reg. Box
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	110,000 lbs (48,930 DaN)
Overpull to Yield Motor	240,000 lbs (106,757 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

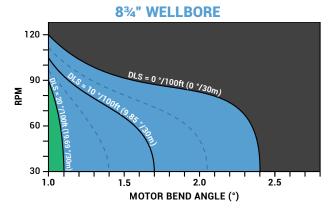

POWER SECTION	
Lobe Configuration	7/8
Stages	9.4
Max Differential Pressure	2,120 psi (14,580 kPa)
Stall Differential Pressure	3,170 psi (21,870 kPa)
Torque at Max Diff Pressure	18,680 ft-lbs (25,330 Nm)
Stall Torque	28,020 ft-lbs (37,990 Nm)
Flow Range	500-750 gal/min (1,890 - 2,840 L/min)
Speed Range	144 - 220 RPM
Speed Ratio	0.29 rev/gal (0.08 rev/L)
Torque Slope	8.82 ft-lb/psi (1.73 Nm/kPa)

GENERAL DIMENSIONS

TiTAN22 | 7.15" 7/8 9.4

TiTAN22 | 7.15" 7/8 9.4



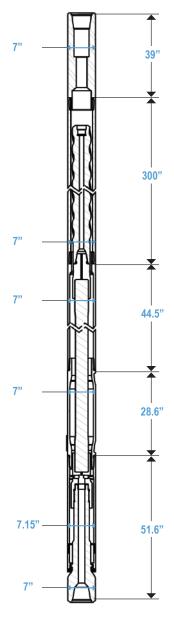

*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.

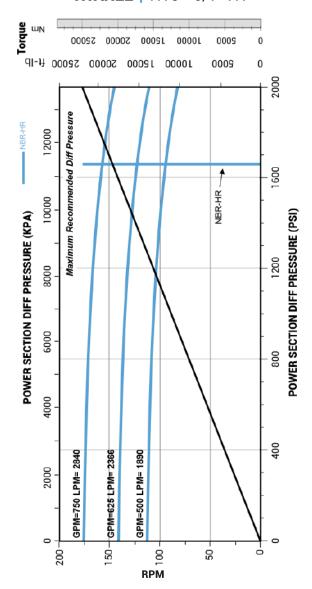
ROTATIONAL LIMIT

TiTAN22 | 7.15"

TiTAN22 | 7.15" 6/7 7.1


GENERAL SPECIFICATIONS	
OD	7.15 in (181 mm)
Length	38 ft (11.52 m)
Recommended Hole Sizes	8 1/2 - 9 7/8 in (215 - 250 mm)
Max Bend Angle	2.12°

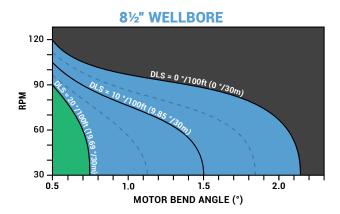
BEARING SECTION	
Bit to Bend Length	52 in (1.3 m)
Bit Box Connection	4½ in API Reg. Box
Max WOB	60,000 lbs (26,689 DaN)
Max Overpull for Rerun	110,000 lbs (48,930 DaN)
Overpull to Yield Motor	240,000 lbs (106,757 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

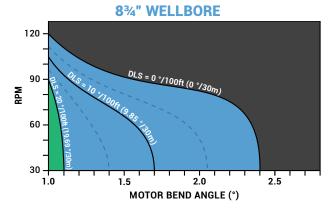

POWER SECTION	
Lobe Configuration	6/7
Stages	7.1
Max Differential Pressure	1,670 psi (11,600 kPa)
Stall Differential Pressure	2,630 psi (18,200 kPa)
Torque at Max Diff Pressure	18,680 ft-lbs (24,800 Nm)
Stall Torque	28,700 ft-lbs (39,000 Nm)
Flow Range	500-750 gal/min (1,890 - 2,840 L/min)
Speed Range	115 - 170 RPM
Speed Ratio	0.23 rev/gal (0.06 rev/L)
Torque Slope	10.92 ft-lb/psi (2.15 Nm/kPa)

GENERAL DIMENSIONS

TiTAN22 | 7.15" 6/7 7.1

TiTAN22 | 7.15" 6/7 7.1




*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a 15°/100 ft curve over that 10 ft, the local dog-leg (DLS in the figure) is 15°/100ft. The rotation limits should be adhered to when the bit depth is within +/- 5 ft of the slide length, as well as in the slide length.

ROTATIONAL LIMIT

TiTAN22 | 7.15"

TITAN HD | HEAVY DUTY

Scientific Drilling's Titan HD is an industry standard mud motor with over 20 years of proven performance for a wide range of drilling applications across the globe. The Titan HD is a shorter bit to bend solution, with an enhanced CV joint that helps to mitigate stick slip and vibration.

The motor is engineered to achieve higher build rates with lower bend angles. The motor's shorter bit to bend design enables safe rig site handling, while delivering a cost-effective solution for superior downhole control to steer the vertical or building curve.

DELIVERING THE ULTIMATE VALUE

- Extended motor life in harsh drilling environments
- Enhanced WOB capacity for increased ROP
- Rugged driveline designed for higher torque power sections, increasing drilling efficiency
- Enhanced CV joint, helping to mitigate stick slip and vibrations

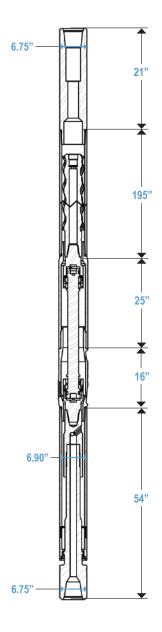
TARGET APPLICATIONS

- Laminated Formations
- Factory Drilling in Shale Reservoirs
- **Directional Drilling**
- Curve and Lateral Drilling
- Vertical Drilling
- Steered Verticals

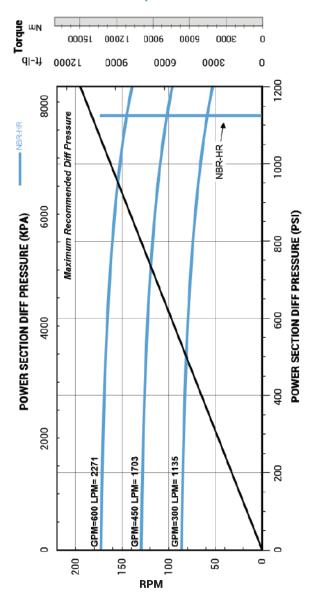
TOOL RENDERING

TITAN HD | HEAVY DUTY

TITAN HD | 6³/₄" 4/5 7.0


GENERAL SPECIFICATIONS	
OD	6.90 in (175.3 mm)
Length	25 ft (7.62 m)
Recommended Hole Sizes	8 1/2 - 9 7/8 in (216 - 251 mm)
Max Bend Angle	2.5°

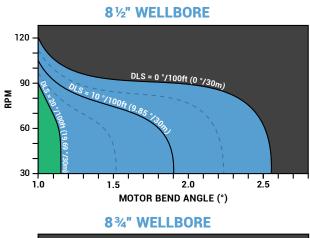
BEARING SECTION	
Bit to Bend Length	54 in (1.37 m)
Bit Box Connection	4½ API Reg.
Max WOB	50,000 lbs (22,241 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug

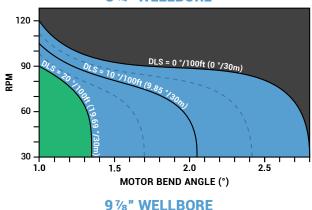

POWER SECTION	
Lobe Configuration	4/5
Stages	7.0
Max Differential Pressure	1,580 psi (10,860 kPa)
Stall Differential Pressure	2,360 psi (16,290 kPa)
Torque at Max Diff Pressure	9,090 ft-lbs (12,330 Nm)
Stall Torque	13,630 ft-lbs (18,490 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	149-300 RPM
Speed Ratio	0.49 rev/gal (.13 rev/L)
Torque Slope	5.77 ft-lb/psi (1.14 Nm/kPa)

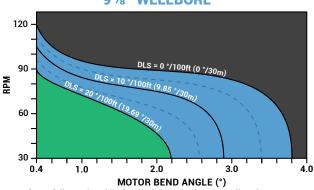
GENERAL DIMENSIONS

TITAN HD | 63/4" 4/5 7.0

TITAN HD | 63/4" 4/5 7.0



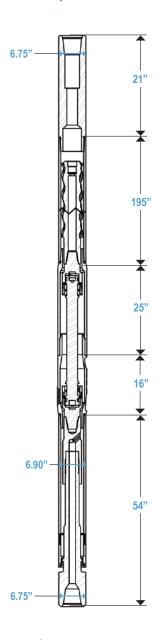

*(Right) The DLS in the figure represents the local dog-leg.


For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.

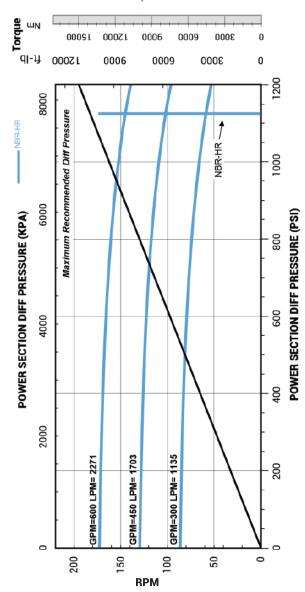
ROTATIONAL LIMIT

TITAN HD | 63/4"

TITAN HD | 6³/₄" 7/8 5.0


GENERAL SPECIFICATIONS	
OD	6.90 in (175.3 mm)
Length	25.9 ft (7.9 m)
Recommended Hole Sizes	8 1/2 - 9 7/8 in (216 - 251 mm)
Max Bend Angle	2.5°

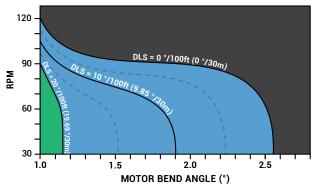
BEARING SECTION	
Bit to Bend Length	54 in (1.37 m)
Bit Box Connection	4½ API Reg.
Max WOB	50,000 lbs (22,241 DaN)
Max Overpull for Rerun	105,000 lbs (46,706 DaN)
Overpull to Yield Motor	210,000 lbs (93,413 DaN)
Max Bit Pressure Drop	1,000 psi (6,894 kPa)
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)
LCM Capability	40 lb nut plug


POWER SECTION	
Lobe Configuration	7/8
Stages	5.0
Max Differential Pressure	1,130 psi (7,760 kPa)
Stall Differential Pressure	1,690 psi (11,630 kPa)
Torque at Max Diff Pressure	10,460 ft-lbs (14,190 Nm)
Stall Torque	15,690 ft-lbs (21,280 Nm)
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)
Speed Range	86-180 RPM
Speed Ratio	0.29 rev/gal (.08 rev/L)
Torque Slope	9.30 ft-lb/psi (1.83 Nm/kPa)

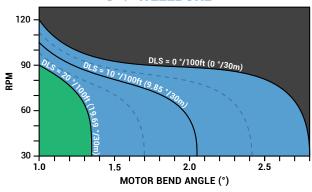
GENERAL DIMENSIONS

TITAN HD | 63/4" 7/8 5.0

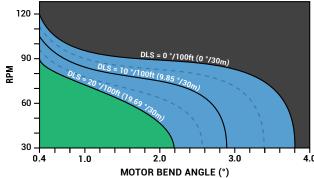
TITAN HD | 63/4" 7/8 5.0


*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

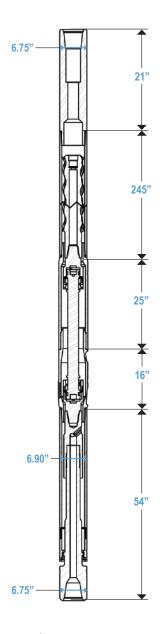
TITAN HD | 63/4"



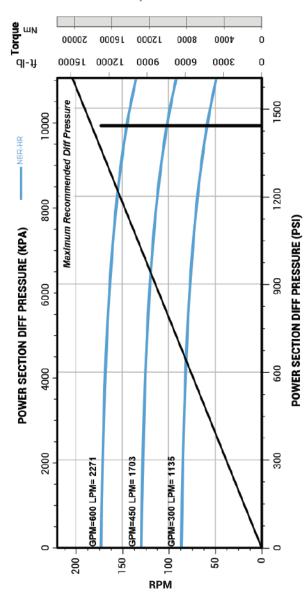
8¾" WELLBORE

9 % WELLBORE

TITAN HD | 63/4" 7/8 6.4


GENERAL SPECIFICATIONS		
OD	6.90 in (175.3 mm)	
Length	30.1 ft (9.18 m)	
Recommended Hole Sizes	8 1/2 - 9 7/8 in (216 - 251 mm)	
Max Bend Angle	2.5°	

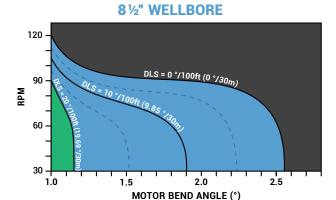
BEARING SECTION		
Bit to Bend Length	54 in (1.37 m)	
Bit Box Connection	4½ API Reg.	
Max WOB	60,000 lbs (26,689 DaN)	
Max Overpull for Rerun	105,000 lbs (46,706 DaN)	
Overpull to Yield Motor	210,000 lbs (93,413 DaN)	
Max Bit Pressure Drop	1,000 psi (6,894 kPa)	
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)	
LCM Capability	40 lb nut plug	

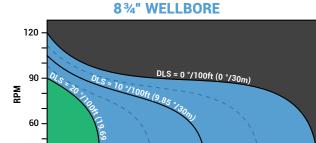

POWER SECTION			
Lobe Configuration	7/8		
Stages	6.4		
Max Differential Pressure	1,440 psi (9,930 kPa)		
Stall Differential Pressure	2,160 psi (14,890 kPa)		
Torque at Max Diff Pressure	13,390 ft-lbs (18,160 Nm)		
Stall Torque	20,090 ft-lbs (27,240 Nm)		
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)		
Speed Range	86 - 180 RPM		
Speed Ratio	0.29 rev/gal (0.08 rev/L)		
Torque Slope	9.30 ft-lb/psi (1.83 Nm/kPa)		

GENERAL DIMENSIONS

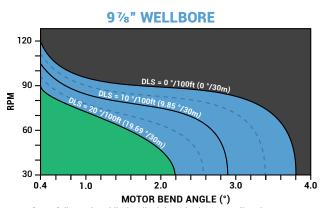
TITAN HD | 63/4" 7/8 6.4

TITAN HD | 63/4" 7/8 6.4




*(Right) The DLS in the figure represents the local dog-leg.

For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

TITAN HD | 63/4"

1.5

2.0

MOTOR BEND ANGLE (°)

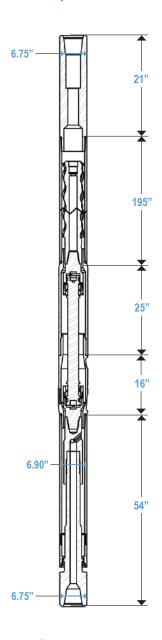
Refer to full rotational limits disclaimer in the appendix prior to use

30

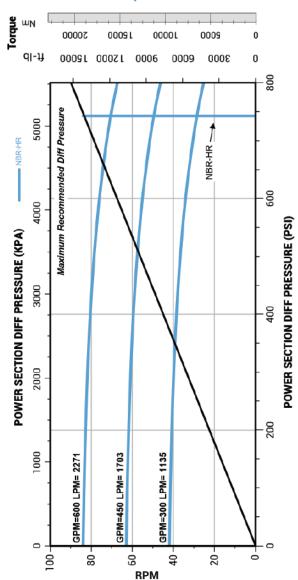
1.0

2.5

TITAN HD | 6³/₄" 7/8 3.3


GENERAL SPECIFICATIONS		
OD	6.90 in (175.3 mm)	
Length	25.9 ft (7.9 m)	
Recommended Hole Sizes	8 ¹ / ₂ - 9 ⁷ / ₈ in (216 - 251 mm)	
Max Bend Angle	2.5°	

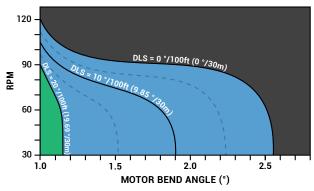
BEARING SECTION		
Bit to Bend Length	54 in (1.37 m)	
Bit Box Connection	4½ API Reg.	
Max WOB	50,000 lbs (22,241 DaN)	
Max Overpull for Rerun	105,000 lbs (46,706 DaN)	
Overpull to Yield Motor	210,000 lbs (93,413 DaN)	
Max Bit Pressure Drop	1,000 psi (6,894 kPa)	
Opt Bit Pressure Drop	100 - 750 psi (690 - 5,171 kPa)	
LCM Capability	40 lb nut plug	


POWER SECTION		
Lobe Configuration	7/8	
Stages	3.3	
Max Differential Pressure	740 psi (5,120 kPa)	
Stall Differential Pressure	1,110 psi (7,680 kPa)	
Torque at Max Diff Pressure	14,110 ft-lbs (19,130 Nm)	
Stall Torque	21,160 ft-lbs (28,690 Nm)	
Flow Range	300-600 gal/min (1,140 - 2,270 L/min)	
Speed Range	42-84 RPM	
Speed Ratio	0.14 rev/gal (.04 rev/L)	
Torque Slope	19.00 ft-lb/psi (3.74 Nm/kPa)	

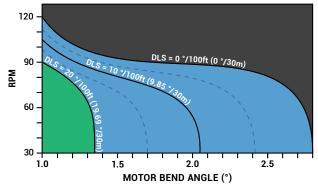
GENERAL DIMENSIONS

TITAN HD | 634" 7/8 3.3

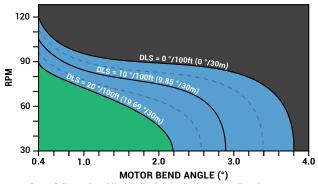
TITAN HD | 63/4" 7/8 3.3


*(Right) The DLS in the figure represents the local dog-leg.

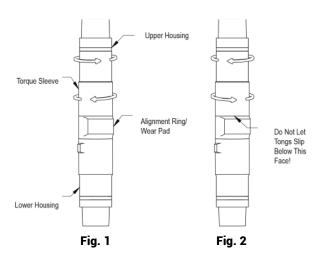
For Example: If the motor slides for 10 ft and outputs a $15^{\circ}/100$ ft curve over that 10 ft, the local dog-leg (DLS in the figure) is $15^{\circ}/100$ ft. The rotation limits should be adhered to when the bit depth is within +/-5 ft of the slide length, as well as in the slide length.


ROTATIONAL LIMIT

TITAN HD | 63/4"



8¾" WELLBORE


9 % WELLBORE

APPENDIX

Falon II Adjustment Procedure	.11
Shock and Vibration Limits	.11
Hole Size Range per Motor	.11
Predicted Build Rate	. 118
Hole Curvature Calculation	.12
Formulas	.12
Mud Weight	.12
Nozzle Selection	.12
Orill Collar Weight	.12
Casing Dimensions and Bit Clearance	.12
Recommended Minimum Make-up Torque	.13
Rotary Shoulder Connection Interchange List	.14
Heavy-Wall Drill Pipe Properties	.14
Forsional Angle of Drill Pipe	.14
Conversion Factors	.14
Froubleshooting Charts	14

TALON II ADJUSTMENT PROCEDURE

- 1. Break Connection
- 2. Place rig tongs on the Upper Housing and on the Torque Sleeve. Break the connection by applying torque in the direction indicated in Fig. 1
- 3. Set ABH Angle
- Holding the Upper Housing stationary, rotate the Lower Housing until the desired angle marks are aligned on the Alignment Ring and the Lower Housing
- 5. Note: Always use the shortest direction to the required bend angle setting
- 6. Make-Up Connection
- Holding the Upper and the Lower Housings stationary, use a chain tong to make-up the Torque Sleeve until it shoulders on the Alignment Ring.
- Place rig tongs on the Upper Housing and on the Torque Sleeve. Torque connection to recommended value by applying torque in the direction indicated in Fig. 2.

TALON II ABH TORQUE VALUES

Motor Sizo	Torque		
Motor Size	ft-lbs	Nm	
2-3/8"	1,250	1,694	
2-7/8"	2,750	3,728	
3-3/4"	5,000	6,779	
4-3/4"	9,000	12,202	
6-1/4"	19,500	26,438	
6-1/2"	26,500	35,929	
6-3/4"	28,500	38,640	
8"	47,500	64,401	
9-5/8"	70,000	94,907	

SHOCK AND VIBRATION LIMITS

AXIAL VIBRATION				
DD Level	0	1	2	3
RMS (g)	< 2	2 - 4	4 - 6	> 6
Time (hrs)	None	None	6	0.5

LATERAL VIBRATION				
DD Level	0	1	2	3
RMS (g)	< 2.5	2.5 - 5	5 - 7.5	> 7.5
Time (hrs)	None	None	6	0.5

STICK SLIP				
DD Level	0	1	2	3 - 6
RMS (g)	< 100%	100 - 150%	150 - 200%	> 200%
Time (hrs)	None	None	6	0.5

HOLE SIZE RANGE PER MOTOR SIZE

MOTOR SIZE	RECOMMENDED Hole Size Range	
3¾"	4¾" - 5¾"	121 – 149 mm
4¾"	51/8" - 71/8"	149 – 200 mm
6¼"	7%" - 8¾"	200 – 222 mm
6 ½"	7%" – 9%"	200 – 251 mm
6¾"	81/2" - 91/8"	216 – 251 mm
7¼"	81/2" - 91/8"	216 – 251 mm
8"	91/2" - 121/2"	241 – 318 mm
95%"	12¼" – 26"	311 – 660 mm

PREDICTED BUILD RATE

housing. Since other factors, such as formation, bit type, WOB, hole gauge, etc. affect the actual build rate, the following numbers should be used as a guide only. Note: the expected build rates are for slick assemblies, and the use of stabilizers will affect the The following tables predict the average build rate based on the size of the motor, hole size, and the bend angle of the drive shaft dogleg expectancy.

				3¾'	3%" Motor							
Bend Angle (Deg)	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
Hole Size					Expect	Expected Build Rate (deg/	ate (deg/	100 ft)				
4 3/4"	N/A	2.7	3.8	6.1	8.5	11.2	13.5	15.9	18.4	20.8	23.3	26.1
5 78"	N/A	2.6	3.7	5.5	7.9	10.5	12.8	15.1	17.2	19.9	22.3	25.0

434" Motor	e (Deg) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00	ize Expected Build Rate (deg/100 ft)	" 1.8 3.6 5.4 7.2 9.0 10.8 12.5 14.3 17.2 19.6 22.0 24.5	1.7 3.4 5.2 7.0 8.6 10.4 12.0 13.7 16.4 18.8 21.2	1.6 3.3 5.1 6.8 8.4 10.2 11.8 13.4 16.1 18.5 20.8	1.5 3.1 4.7 6.3 7.8 9.4 10.9 12.4 14.7 17.0 19.5	14 20 42 FE 60 02 06 110 116 127 162
	Bend Angle (Deg)	Hole Size	2 1/8"	849	6 1/4"	634"	"727

PREDICTED BUILD RATE (CONTINUED)

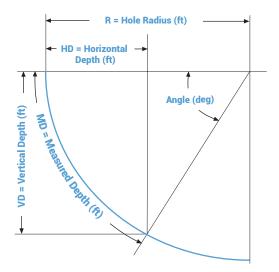
		3.00		18.2	17.2	16.8
		2.75		16.5	15.4	15.0
		2.50		14.6	13.7	13.3
		2.25		13.0	11.9	11.5
		2.00	1 00 ft)	11.2	10.2	8.6
		1.75	Expected Build Rate (deg/	9.5	8.4	8.0
		1.50	ed Build F	7.7	6.7	6.3
	' Motor	1.25	Expect	0.9	4.9	4.5
	61/4	1.00		4.2	3.2	2.8
		0.75		2.5	1.5	1.0
		0.50		1.2	N/A	N/A
		0.25		N/A	N/A	N/A
		Bend Angle (Deg)	Hole Size	7 1/8"	81/2"	8 3/4"

		3.00		18.9	18.8	14.7	13.9
		2.75		17.0	16.9	13.5	12.8
		2.50		15.1	15.0	12.3	11.7
		2.25		13.2	13.1	11.1	10.6
		2.00	00 ft)	11.3	11.2	6.6	9.5
		1.75	ate (deg/1	6.6	9.8	8.7	8.4
	tor	1.25 1.50	Expected Build Rate (deg/100 ft)	8.5	8.4	7.5	7.2
	63/4" Mc	1.25	Expect	7.1	7.0	6.2	0.9
	6 1/2" and 6 3/4" Motor	1.00		5.7	5.6	5.0	4.8
		0.75		4.3	4.2	3.7	3.6
		0.50		2.9	2.8	2.5	2.4
		0.25		1.5	1.4	1.2	1.2
		Bend Angle (Deg)	Hole Size	7 1/8" (61/2" only)	8 1/2 " & 8 3/4 "	912"	8½6

PREDICTED BUILD RATE (CONTINUED)

				71/4	1/4" Motor							
Bend Angle (Deg)	0.25	0.50	0.75	1.00	1.25 1.50 1.75	1.50	1.75	2.00	2.25	2.50	2.75	3.00
Hole Size					Expect	ed Build F	Expected Build Rate (deg/100 ft)	100 ft)				
8 1/2 "	N/A	1.5	2.9	4.4	5.9	7.3	8.7	10.1	11.5	13.0	14.4	15.8
91/2"	N/A	0.5	1.9	3.3	4.8	6.2	9.7	0.6	10.4	12.0	13.3	14.7
,,%,D	A/N	N/A 1.5	7.	29	29 44 58	rc.	7.2	8	10.2	10.2 11.6 13.0	13.0	14.4

8" Motor	1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00	Expected Build Rate (deg/100 ft)	4.3 5.7 7.2 8.6 10.1 11.6 13.0 14.5 15.9	3.6 5.0 6.5 8.0 9.4 10.9 12.3 13.8 15.3	N/A N/A 18 32 47 62 76 91 105
	75 2.	deg/1001			2
	.1	ild Rate (2 8.		
5		pected Bu			4
8" Mote	0 1.2	EX			
·					
	0.75		2.8	2.1	A/N
·	0.50		1.3	N/A	A/N
	0.25		N/A	N/A	A/N
	Bend Angle (Deg)	Hole Size	91/2"	8/16	121%"


PREDICTED BUILD RATE (CONTINUED)

				95%	95/8" Motor							
Bend Angle (Deg)	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
Hole Size					Expect	ed Build F	Expected Build Rate (deg/100 ft)	1 00 ft)				
121/4"	8.0	1.7	2.5	3.3	4.2	5.0	5.8	6.7	7.5	8.3	9.2	10.0
1434"	0.7	1.4	2.1	2.8	3.4	4.1	4.8	5.5	6.1	6.7	7.4	8.1
171/2"	9.0	[]	1.7	2.3	2.8	3.4	4.0	4.5	5.1	5.7	6.2	8.9
22"	0.4	8.0	1.3	1.8	2.2	2.6	3.1	3.5	4.0	4.4	4.9	5.4
26"	0.4	0.7		1.5	1.9	2.2	2.6	3.0	3.3	3.7	4.1	4.4

HOLE CURVATURE CALCULATION

The following table shows the radius of curvature for different build rates. These numbers are generated by using the Radius Formula.

$$R = MD \div (0.017453 \times Angle)$$

 $VD = R Sin (Angle)$
 $HD = R [1-Cos (Angle)]$

Build Rate	Ho Rad		Build Rate		ole dius
°/100 ft	ft	m	°/100 ft	ft	m
2	2,865	873	66	87	27
4	1,432	436	68	84	26
6	955	291	70	82	25
8	716	218	72	80	24
10	573	175	74	77	23
12	477	145	76	75	23
14	409	125	78	73	22
16	358	109	80	72	22
18	318	97	82	70	21
20	286	87	84	68	21
22	260	79	86	67	20
24	239	73	88	65	20
26	220	67	90	64	20
28	205	62	92	62	19
30	191	58	94	61	19
32	179	55	96	60	18
34	169	52	98	58	18
36	159	48	100	57	17
38	151	46	105	55	17
40	143	44	110	52	16
42	136	41	115	50	15
44	130	40	120	48	15
46	125	38	125	46	14
48	119	36	130	44	13
50	115	35	135	42	13
52	110	34	140	41	13
54	100	30	145	40	12
56	102	31	150	38	12
58	99	30	155	37	11
60	95	29	160	36	11
62	92	28	165	35	11
64	90	27	170	34	10

FORMULAS

Horsepower

$$\textbf{BHP} = \begin{array}{c} P_b \times Q \\ \hline 1714 \end{array} \qquad \begin{array}{c} \text{BHP} = \text{Bit Hydraulic Horsepower (HP)} \\ P_b = \text{Bit Pressure Drop (psi)} \\ Q = \text{Flow Rate (gal/min)} \\ \\ \textbf{MHP} = \begin{array}{c} T \times N \\ \hline 5252 \end{array} \qquad \begin{array}{c} \text{MHP} = \text{Mechanical Horsepower (HP)} \\ T = \text{Torque (ft-lb)} \\ N = \text{Motor RPM} \\ \\ \textbf{AHHP} = \begin{array}{c} P \times Q \\ \hline 1714 \end{array} \qquad \begin{array}{c} \text{AHHP} = \text{Available Hydraulic Horsepower} \\ \text{to Motor (HP)} \\ P = \text{Motor Pressure Drop (psi)} \\ Q = \text{Flow Rate (gal/min)} \\ \end{array}$$

Pressure

Velocity

$$AV = Annular \ Velocity (ft/sec)$$

$$Q = Flow \ Rate (gal/min)$$

$$D_h = Hole \ Diameter (in)$$

$$D_S = Drill \ string \ OD (in)$$

$$NV = \frac{0.3209 \times Q}{A}$$

$$\frac{Q}{A} = Flow \ Rate (gal/min)$$

$$\frac{D_S}{D_S} = Drill \ string \ OD (in)$$

$$\frac{Q}{A} = Flow \ Rate (gal/min)$$

Air Motor RPM Calculation

MUD WEIGHT

lb/gal	kg/l	lb/ft³	kg/m³	Sp. Gr.	psi/ft	kPa/m
8.3	0.99	62.08	994.43	1.00	0.431	9.75
8.4	1.01	62.83	1,006.44	1.01	0.436	9.86
8.5	1.02	63.58	1,018.45	1.02	0.441	9.98
8.6	1.03	64.33	1,030.47	1.04	0.447	10.11
8.7	1.04	65.08	1,042.48	1.05	0.452	10.22
8.8	1.05	65.82	1,054.34	1.06	0.457	10.34
8.9	1.07	66.57	1,066.35	1.07	0.462	10.45
9.0	1.08	67.32	1,078.36	1.08	0.467	10.56
9.1	1.09	68.07	1,090.38	1.10	0.472	10.68
9.2	1.10	68.82	1,102.39	1.11	0.478	10.81
9.3	1.11	69.56	1,114.24	1.12	0.483	10.93
9.4	1.13	70.31	1,126.26	1.13	0.488	11.04
9.5	1.14	71.06	1,138.27	1.14	0.493	11.15
9.6	1.15	71.81	1,150.29	1.16	0.498	11.27
9.7	1.16	72.56	1,162.30	1.17	0.504	11.40
9.8	1.17	73.30	1,174.15	1.18	0.509	11.51
9.9	1.19	74.05	1,186.17	1.19	0.514	11.63
10.0	1.20	74.80	1,198.18	1.20	0.519	11.74
10.1	1.21	75.55	1,210.19	1.22	0.524	11.85
10.2	1.22	76.30	1,222.21	1.23	0.530	11.99
10.3	1.23	77.04	1,234.06	1.24	0.535	12.10
10.4	1.25	77.79	1,246.08	1.25	0.540	12.22
10.5	1.26	78.54	1,258.09	1.27	0.545	12.33
10.6	1.27	79.29	1,270.10	1.28	0.550	12.44
10.7	1.28	80.04	1,282.12	1.29	0.556	12.58
10.8	1.29	80.78	1,293.97	1.30	0.561	12.69
10.9	1.31	81.53	1,305.99	1.31	0.566	12.80
11.0	1.32	82.28	1,318.00	1.33	0.571	12.92
11.1	1.33	83.03	1,330.01	1.34	0.577	13.05
11.2	1.34	83.78	1,342.03	1.35	0.582	13.17
11.3	1.35	84.52	1,353.88	1.36	0.587	13.28
11.4	1.37	85.27	1,365.89	1.37	0.592	13.39
11.5	1.38	86.02	1,377.91	1.39	0.597	13.50
11.6	1.39	86.77	1,389.92	1.40	0.602	13.62
11.7	1.40	87.52	1,401.94	1.41	0.607	13.73
11.8	1.41	88.26	1,413.79	1.42	0.613	13.87
11.9	1.43	89.01	1,425.80	1.43	0.618	13.98
12.0	1.44	89.76	1,437.82	1.45	0.623	14.09
12.1	1.45	90.51	1,449.83	1.46	0.628	14.21
12.2	1.46	91.26	1,461.84	1.47	0.633	14.32
12.3	1.47	92.00	1,473.70	1.48	0.639	14.45
12.4	1.49	92.75	1,485.71	1.49	0.644	14.57
12.5	1.50	93.50	1,497.73	1.51	0.649	14.68
12.6	1.51	94.25	1,509.74	1.52	0.654	14.79

NOZZLE SELECTION

For proper sizing of the rotor nozzle, refer to the Motor Specification section and obtain the recommended flow rate through the motor at the desired RPM and differential pressure. Subtract this flow rate from the total desired flow rate to obtain the required flow rate through the nozzle (q). Adjust this flow rate for the actual mud weight as follows:

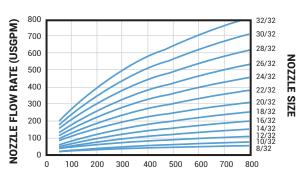
$$Q = q \times 0.35 \times \sqrt{\text{(Mud Weight)}}$$

$$(\text{gal/min}) \text{ (gal/min)} \text{ (lb/gal)}$$

Using Q and the desired motor differential pressure, determine the nozzle size from the graph below. Use the next smaller nozzle if between sizes.

Example

A 63/4", 4:5, 7.0 stage extended drilling motor is used to drill a well. A 12.5 lb/gal mud at 750 gal/min will be used to complete this well. If the motor is operated at 700 psi of differential pressure, determine if it is necessary to nozzle the rotor. If so, what is the proper nozzle size?


Solution

The maximum allowable flow rate through a 63/4", 4:5, 7.0 stage extended drilling motor is 600 gal/min, as listed in the Motor Specification section. Therefore, the additional 150 gal/min should bypass the power section through the rotor.

To determine the nozzle size, first adjust the flow rate for the actual mud weight:

$$Q = 150 \times 0.35 \times (12.5)^{0.5} = 185.62 \text{ gal/min}$$

The nozzle selection graph shows that pumping 185.62 gal/min at 700 psi differential pressure requires a 16/32 nozzle.

MOTOR DIFFERENTIAL PRESSURE (PSI)

DRILL COLLAR WEIGHT (LB/FT)

					Ins	ide	Dian	neter ((in)				
OD (in)	_	11/4	11/2	13%	2	21/4	21/2	2 ¹³ /1e	ы	314	31/2	33%	4
		Δ,	20.	4.		•	N.	ช ์		•	N.	4.	
21/8	19	18	16										
3	21	20	18										
31/8	22	22	20										
31/4	26	24	22										
31/2	30	29	27										
3¾	35	33	32										
4	40	39	37	35	32	29							
41/8	43	41	39	37	35	32							
41⁄4	46	44	42	40	38	35							
41/2	51	50	48	46	43	41							
4 3/4			54	52	50	47	44						
5			61	59	56	53	50						
51/4			68	65	63	60	57						
5½			75	73	70	67	64	60					
5 3/4			82	80	78	75	72	67	64	60			
6			90	88	85	83	79	75	68	68			
61/4			98	96	94	91	88	83	76	76	72		
6½			107	105	102	99	96	91	85	85	80		
63/4			116	114	111	108	105	100	93	93	89		
7					120	117	114	110	103	103	98	93	94
71/4					130	127	124	119	112	112	108	103	93
7½					139	137	133	129	122	122	117	113	102
73/4					150	147	144	139	132	132	128	123	112
8					160	157	154	150	143	143	138	133	122
81/4					171	168	165	160	154	154	149	144	133
81/2					182	179	176	172	165	165	160	155	150
9						203	200	195	188	188	184	179	174
91/2						227	224	220	212	212	209	206	198
93/4						240	237	232	225	225	221	216	211
10						254	251	246	239	239	235	230	225
11						310	307	302	295	295	291	286	281
12						371	368	364	357	357	352	347	342

CASING DIMENSIONS AND BIT CLEARANCE

OD	Weight			Coupling		Bit	
(in)	(lb/ft)	Wall	ID	OD	Drift	Size	Clearance
41/2	9.50	0.205	4.090	5.000	3.965	31/8	0.090
	11.60	0.205	4.000	5.000	3.875	37/8	0.000
	13.50	0.290	3.920	5.000	3.795	3¾	0.045
	15.10	0.337	3.826	5.000	3.701	35/8	0.078
5	11.50	0.220	4.560	5.563	4.435	41/4	0.185
	13.00	0.253	4.494	5.563	4.369	41/4	0.119
	15.00	0.296	4.408	5.563	4.283	41/4	0.033
	18.00	0.362	4.276	5.563	4.151	41/8	0.026
5½	13.00	0.228	5.044	6.050	4.919	4¾	0.169
	14.00	0.244	5.012	6.050	4.887	4¾	0.137
	15.50	0.275	4.950	6.050	4.825	4¾	0.075
	17.00	0.304	4.892	6.050	4.767	4¾	0.017
	20.00	0.361	4.778	6.050	4.653	45/8	0.028
	23.00	0.415	4.670	6.050	4.545	41/2	0.045
6	15.00	0.238	5.524	6.625	5.399	5%	0.024
	18.00	0.288	5.425	6.625	5.299	51/8	0.174
	20.00	0.324	5.352	6.625	5.227	51/8	0.102
	23.00	0.380	5.240	6.625	5.115	47/8	0.240
	26.00	0.434	5.132	6.625	5.007	47/8	0.132
65/8	17.00	0.245	6.135	7.390	6.010	6	0.010
	20.00	0.288	6.049	7.390	5.924	57/8	0.049
	24.00	0.352	5.921	7.390	5.769	5¾	0.046
	28.00	0.417	5.791	7.390	5.666	5%	0.014
	32.00	0.475	5.675	7.390	5.550	5%	0.175
7	17.00	0.231	6.538	7.656	6.413	6%	0.038
	20.00	0.272	6.456	7.656	6.331	6¼	0.081
	23.00	0.317	6.366	7.656	6.241	61/8	0.116
	26.00	0.362	6.276	7.656	6.151	61/8	0.026
	29.00	0.408	6.184	7.656	6.059	6	0.059
	32.00	0.453	6.094	7.656	5.969	5%	0.940
	35.00	0.498	6.004	7.656	5.879	5%	0.004
	38.00	0.540	5.920	7.656	5.795	5¾	0.045

CASING DIMENSIONS AND BIT CLEARANCE

OD (in)	Weight (lb/ft)	Wall (in)	ID (in)	Coupling OD (in)	Drift (in)	Bit Size (in)	Clearance (in)
75/8	20.00	0.250	7.125	8.500	7.000	63/4	0.250
	24.00	0.300	7.025	8.500	6.900	63/4	0.150
	26.40	0.328	6.969	8.500	6.844	63/4	0.094
	29.70	0.375	6.875	8.500	6.750	63/4	0.000
	33.70	0.430	6.765	8.500	6.640	65/8	0.015
	39.00	0.500	6.625	8.500	6.500	63/8	0.125
85/8	24.00	0.264	8.097	9.625	7.972	71/8	0.097
	28.00	0.304	8.017	9.625	7.892	71/8	0.017
	32.00	0.352	7.921	9.625	7.796	73/4	0.046
	36.00	0.400	7.825	9.625	7.700	75/8	0.075
	40.00	0.450	7.725	9.625	7.600	73/8	0.225
	44.00	0.500	7.625	9.625	7.500	73/8	0.125
	49.00	0.557	7.511	9.625	7.386	73/8	0.011
9 5/8	29.30	0.281	9.063	10.625	8.907	8¾	0.157
	32.30	0.312	9.001	10.625	8.845	8¾	0.095
	36.00	0.352	8.921	10.625	8.765	8¾	0.015
	40.00	0.395	8.835	10.625	8.697	85/8	0.072
	43.50	0.435	8.755	10.625	8.599	8½	0.099
	47.00	0.472	8.681	10.625	8.525	8½	0.025
	53.50	0.545	8.535	10.625	8.379	83/8	0.004
10¾	32.75	0.279	10.192	11.750	10.036	97⁄8	0.161
	40.50	0.350	10.050	11.750	9.894	91/8	0.019
	45.50	0.400	9.920	11.750	9.794	9¾	0.044
	51.00	0.450	9.850	11.750	9.694	95/8	0.069
	55.50	0.495	9.760	11.750	9.604	9	0.630
	60.70	0.545	9.660	11.750	9.504	9	0.504
	65.70	0.595	9.560	11.750	9.404	9	0.404
113/4	38.00	0.300	11.150	12.750	10.994	105/8	0.369
	42.00	0.333	11.084	12.750	10.928	105/8	0.303
	47.00	0.375	11.000	12.750	10.844	105/8	0.219
	54.00	0.435	10.880	12.750	10.724	105/8	0.099
	60.00	0.489	10.772	12.750	10.616	9%	0.741

CASING DIMENSIONS AND BIT CLEARANCE

OD (in)	Weight (lb/ft)	Wall (in)	ID (in)	Coupling OD (in)	Drift (in)	Bit Size (in)	Clearance (in)
133/8	48.00	0.330	12.715	14.375	12.559	12¼	0.309
	54.50	0.380	12.615	14.375	12.459	12¼	0.209
	61.00	0.430	12.515	14.375	12.359	12¼	0.109
	68.00	0.480	12.415	14.375	12.259	12¼	0.009
	72.00	0.514	12.374	14.375	12.191	10	2.191
16	55.00	0.312	15.375	17.000	15.188	15	0.188
	65.00	0.375	15.250	17.000	15.062	15	0.062
	75.00	0.438	15.125	17.000	14.938	143/4	0.188
	84.00	0.495	15.010	17.000	14.823	14¾	0.073
20	94.00	0.438	19.124	21.000	18.938	17½	1.436

RECOMMENDED MINIMUM MAKE-UP TORQUE

Protective Sleeve & Near Bit Stabilizer Make-up Torque Values

Tool Size	Toro	ue
1001 3126	ft-lbs	Nm
33/4"	6,500	8,813
43/4"	11,000	14,914
64"	17,000	23,049
6½"	26,500	35,929
63/4"	26,500	35,929
7¼"	N/A	N/A
8"	29,000	39,319
9 5/8"	44,000	59,656

								•	•				
F	(1)						Bore of Drill	Bore of Drill Collars (in)					
Connection Type	(III) an	-	1%	1½	13/4	7	21/4	21/2	213/16	က	31/4	31/2	33%
	ო	2,500	2,500	2,500									
API N.C. 23	31/8	3,300	3,300	2,600									
	31/4	4,000	3,400	2,600									
	က		3,800	3,800	2,900								
2 7/8" P.A.C.	31/8		4,900	4,200	2,900								
	31/4		5,200	4,200	2,900								
2 78" AM 0.H.	37/8					4,450*							
2%" AM. O.H. Light weight	3%					2,850*							
27/8" PH-6	31/2					3,500*							
2 1/8" 533 HYDRIL	31/8					2,200*							
2%" API I.F., API N.C. 26	31/2		4,600	4,600	3,700								
2 %" Slim Hole	33%		2,500	4,700	3,700								
278" XHOLE	3%		4,100	4,100	4,100								
31/2" Dbl. Streamline	37/8		2,300	5,300	5,300								
27/8" Mod. Open	41/8		8,000	8,000	7,400								
	4 1/2				8,900	8,900	8,900	7,400					
API N.C. 35	4%4				12,100	10,800	9,200	7,400					
	2				12,100	10,800	9,200	7,400					

Note: The torque values are based on the minimum material yield strength of 120 kpsi. ID of 2" = 2.2.

RECOMMENDED MINIMUM MAKE-UP TORQUE (FT-LBS)

Note: The torque values are based on the minimum material yield strength of 120 kpsi

								1) 5					
F	(!)						Bore of Drill Collars (in)	Collars (in)					
Connection Type	lun) an	-	1,4	1½	1%1	2	21/4	21/2	213/16	က	3¼	3½	3%
:	2				10,800	10,800	10,800	10,800	10,800				
4" Full Hole	51/4				15,100	15,100	15,100	14,800	12,100				
API N.C. 40	5 1/2				19,700	18,600	16,900	14,800	12,100				
4 Mod. Open	5 %				20,400	18,600	16,900	14,800	12,100				
	9				20,400	18,600	16,900	14,800	12,100				
	51/4					12,500	12,500	12,500	12,500				
	5 1/2					17,300	17,300	17,300	16,500				
4" H-90	5%					22,300	21,500	19,400	16,500				
	9					23,500	21,500	19,400	16,500				
	61/4					23,500	21,500	19,400	16,500				
	5 1/2					15,400	15,400	15,400	15,400				
	5 %					20,300	20,300	19,400	16,200				
4 ½ API negular	9					23,400	21,600	19,400	16,200				
	6%					23,400	21,600	19,400	16,200				
	5%					20,600	20,600	20,600	18,000				
N ide	9					25,000	23,300	21,200	18,000				
API N.C. 44	6%					25,000	23,300	21,200	18,000				
	%9					25,000	23300	21 200	18000				

Note: The torque values are based on the minimum material yield strength of 120 kpsi

RECOMMENDED MINIMUM MAKE-UP TORQUE (FT-LBS)

;							Bore of Drill	Bore of Drill Collars (in)					
Connection Type	(ui) no	-	11/4	1 1/2	13/4	2	21/4	21/2	213/16	3	31/4	3½	3¾
	5 1/2					12,900	12,900	12,900	12,900	12,900			
	5%					17,900	17,900	17,900	17,900	17,700			
4 ½" API Full Hole	9					23,300	23,300	22,800	19,800	17,700			
	6 1/4					27,000	25,000	22,800	19,800	17,700			
	6 1/2					27,000	25,000	22,800	19,800	17,700			
4½" X-Hole	2 %						17,600	17,600	17,600	17,600			
API N.C. 46	9						23,200	23,200	22,200	20,200			
41/2" Mod. Open	6 1/4						28,000	25,500	22,200	20,200			
4" API I.F.	6 1/2						28,000	25,500	22,200	20,200			
5" Dbl. Streamline	9% 9						28,000	25,500	22,200	20,200			
	2 %						17,600	17,600	17,600	17,600			
	9						23,400	23,400	23,000	21,000			
41/2" H-90	6 1/4						28,500	26,000	23,000	21,000			
	6 1/2						28,500	26,000	23,000	21,000			
	9%						28,500	26,000	23,000	21,000			
	6 1/4						25,000	25,000	25,000	25,000			
00	6 1/2						31,500	31,500	29,500	27,000			
06-11 6	% 9						35,000	33,000	29,500	27,000			
	7						35,000	33,000	29,500	27,000			

Note: The torque values are based on the minimum material yield strength of 120 kpsi

	•) 				
Carl acitor and	(=)						Bore of Drill	Bore of Drill Collars (in)					
Connection Type	(III) an	-	11/4 11/2	1½	1%	2	2¼	21/2	213/16	က	3%	3½	3%
	6 3/4						34,000	34,000	34,000	34,000			
000	7						41,500	40,000	36,500	34,000			
5 % H-90	71/4						42,500	40,000	36,500	34,000			
	71/2						42,500	40,000	36,500	34,000			
	6 3/4						31,500	31,500	31,500	31,500			
	7						39,000	39,000	36,000	33,500			
5 % API Regular	71/4						42,000	39,500	36,000	33,500			
	71/2						42,000	39,500	36,000	33,500			
41/2" API I.F.	61/4						22,800	22,800	22,800	22,800	22,800		
API N.C. 50	61/2						29,500	29,500	29,500	29,500	26,500		
5" Extra Hole	6 3/4						36,000	35,500	32,000	30,000	26,500		
5" Mod. Open	7						38,000	35,500	32,000	30,000	26,500		
5 ½" Dbl. Streamline	7 1/4						38,000	35,500	32,000	30,000	26,500		
	7							32,500	32,500	32,500	32,500		
olon live to Man	71/4							40,500	40,500	40,500	40,500		
3/2 Ari ruii nole	71/2							49,000	47,000	45,000	41,500		
	100							2000		000 11			

Note: The torque values are based on the minimum material yield strength of 120 kpsi

RECOMMENDED MINIMUM MAKE-UP TOROUE (FT-LBS)

				DECOMMENDED INMINIMON MANE OF LODGE (FILEDS)				בי שסקי) - -				
T solidor	(ii)						Bore of Drill Collars (in)	Collars (in)					
connection type	(III)	-	1,4	1½	134	2	21/4	21/2	213/16	က	3¼	3½	3¾
	71/4							40,000	40,000	40,000	40,000		
0 4 6	7 1/2							48,500	48,000	45,000	42,000		
API N.C. 56	7%							21,000	48,000	45,000	42,000		
	00							51,000	48,000	45,000	42,000		
	71/2							46,000	46,000	46,000	46,000		
	7%							25,000	53,000	20,000	47,000		
6% API Regular	∞							57,000	53,000	20,000	47,000		
	81/4							57,000	53,000	20,000	47,000		
	71/2							46,000	46,000	46,000	46,000		
00 11 2/30	7%							25,000	25,000	53,000	49,500		
06-H 8/0	œ							29,500	26,000	53,000	49,500		
	81/4							29,500	26,000	53,000	49,500		
	œ							54,000	54,000	54,000	54,000		
	81/4							64,000	64,000	64,000	61,000		
API N.C. 61	8 1/2							72,000	68,000	000'59	61,000		
	8 3%							72,000	68,000	000'59	61,000		
	6							72,000	68,000	65,000	61,000		

Note: The torque values are based on the minimum material yield strength of 120 kpsi

)] -				
. F	(1)						Bore of Dril	Bore of Drill Collars (in)					
Connection Type	(iii) an	-	11/4	11/2	13/4	2	21/4	21/2	213/16	ဗ	31/4	31/2	33/4
	œ							26,000	26,000	26,000	26,000	26,000	
	8 1/4							000'99	000'99	000'99	63,000	29,000	
L C C C C C C C C C C C C C C C C C C C	81/2							74,000	70,000	67,000	63,000	29,000	
5% APILE	8 %							74,000	70,000	67,000	63,000	29,000	
	6							74,000	70,000	67,000	63,000	29,000	
	7/ 6							74,000	70,000	67,000	63,000	29,000	
	81/2								000'29	67,000	000'29	67,000	005'99
	8 %								78,000	78,000	76,000	72,000	005'99
658" API Full Hole	6								83,000	80,000	76,000	72,000	005'99
	7,6								83,000	80,000	76,000	72,000	005'99
	91/2								83,000	80,000	76,000	72,000	005'99
	6								75,000	75,000	75,000	75,000	75,000
	91/4								88,000	88,000	88,000	88,000	88,000
0 N 1 G V	91/2								101,000	101,000	100,000	95,000	000'06
APIN.C. 10	9%								107,000	105,000	100,000	95,000	000'06
	10								107,000	105,000	100,000	95,000	000'06
	701								10700	105000	100000	00000	00000

Note: The torque values are based on the minimum material yield strength of 120 kpsi

RECOMMENDED MINIMUM MAKE-UP TORQUE (FT-LBS)

API N.C. 77 10% API N.C. 77 10% 10 10% 11 8 7" H-90 8% 8% 8% 7%" API Regular 9 9%								Bore of Drill Collars (in)	Collars (in)					
	connection Type	(m) go	-	11/4	11/2	134	2	21/4	21/2	213/16	3	31/4	31/2	3¾
		10									107,000	107,000	107,000	107,000
		101/4									122,000	122,000	122,000	122,000
	API N.C. 77	70 1/2									138,000	138,000	133,000	128,000
		10%									143,000	138,000	133,000	128,000
		Ε									143,000	138,000	133,000	128,000
		œ								53,000	53,000	53,000	53,000	
	7" H-90	81/4								63,000	63,000	63,000	60,500	
		81/2								71,500	68,500	000'59	60,500	
		81/2									000'09	000'09	000'09	000'09
		8 3/4									71,000	71,000	71,000	71,000
% 6	75%" API Regular	6									83,000	83,000	79,000	74,000
		91/4									88,000	83,000	79,000	74,000
91/2		9 1/2									88,000	83,000	79,000	74,000

Note: The torque values are based on the minimum material yield strength of 120 kpsi

Court of the Court	(4), 00						3ore of Dri	Bore of Drill Collars (in	(c)				
connection Type	(ii)	-	1¼	11/2	1%	7	2¼		21/2 213/16	ဗ	3¼	3½	3%
	တ									72,000	72,000	72,000	72,000
7 5/8" H-90	91%									85,500	85,500	85,500	85,500
	91/2									000'86	000'86	000'86	95,500
	10									108,000	108,000	108,000	108,000
8 %" API Regular	10 1/4									123,000	123,000	123,000	123,000
	10 1/2									139,000	134,000	129,000	123,000
00 11 11/20	10 1/4									112,500	112,500	112,500	112,500
0.5 1.8/ 0	10 1/2									128,500	128,500	128,500	128,500

Note: The torque values are based on the minimum material yield strength of 120 kpsi

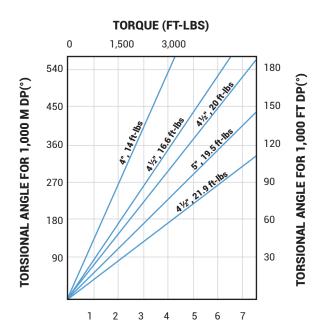
ROTARY SHOULDER CONNECTION INTERCHANGE LIST

Common Name	Size (in)	Same As or Interchanges With
Internal	23/8	2% in Slim Hole NC 26
Flush (IF)	21/8	3½ in Slim Hole NC 31
	3½	4½ in Slim Hole NC 38
	4	4½ in Extra Hole NC 46
	4½	5 in Extra Hole NC 50 or 5½ in Double Streamline
Full Hole (FH)	4	4½ in Double Streamline NC 40
Extra Hole (XH)	21/8	3½ in Double Streamline
or (EH)	3½	4 in Slim Hole or 4½ in External Flush
	41/2	4 in Internal Flush NC 46
	5	4½ in Internal Flush NC 50 or 5½ in Double Streamline
Slim Hole (SH)	21/8	2% in Internal Flush NC 26
	3½	2% in Internal Flush NC 31
Double Streamline	4	3½ in Extra Hole or 4½ in External Flush
	41/2	3½ in Internal Flush NC 38
	3½	2% in Extra Hole
(DSL)	41/2	4 in. Full Hole NC 31
	5½	4½ in Internal Flush or 5 in Extra Hole NC 50
Numbered Connections (NC)	26	2% in Internal flush or 2% in Slim Hole
,	31	2% in Internal Flush or 3½ in Slim Hole
	38	3½ in Internal Flush or 4½ in Slim Hole
	40	4 in Full Hole or 4½ in Double Streamline
	46	4 in Internal Flush or 4½ in Extra Hole
	50	4½ in Internal Flush or 5 in Extra Hole or 5½ in Double Streamline
External Flush (EF)	4½	4 in Slim Hole or 3½ in Extra Hole

HEAVY-WALL DRILL PIPE PROPERTIES

Standard

Nominal Size (in)	Pipe ID (in)	Nominal Weight (lb/ft)	Tool Joint Connection (in)
3½"	2.063	25.3	3.5 IF (NC 38)
4"	2.563	29.7	4 FH (NC 40)
4½"	2.75	41.0	4 IF (NC 46)
5"	3.0	48.5	4.5 IF (NC 50)


Spiral-Wate™

Nominal Size (in)	Pipe ID (in)	Nominal Weight (lb/ft)	Tool Joint Connection (in)
3½"	2.25	26.7	3.5 IF (NC 38)
4"	2.563	32.7	4 FH (NC 40)
4½"	2.75	42.6	4 IF (NC 46)
5"	3.0	53.6	4.5 IF (NC 50)
5½"	4.0	50.7	5 FH
67/8"	5.0	57.0	6.625 FH

TORSIONAL ANGLE OF DRILL PIPE

The effective angle of torsion is calculated by:

Torsional Angle =
$$\frac{\text{(Angle for 1,000 ft) x (Length of DP/ft)}}{1,000}$$

^{**}Calculation does not include wall friction

CONVERSION FACTORS

SI Prefixes

Multiplying Factor	Prefix	Symbol
1,000,000 = 106	mega	М
1,000 = 10 ³	kilo	k
100 = 10 ²	hecto	h
10 = 10 ¹	deca	da
0.1 = 10 ⁻¹	deci	d
0.01 = 10-2	centi	С
0.001 = 10-3	milli	m
0.000,001 = 10-6	micro	μ

Units	Multiply By	To Obtain
ac	43560	ft²
ac	4047	m²
ac	0.001562	mi²
atm	33.94	ft of water (60°F)
atm	14.7	lb/in²
atm	1.013 x 10⁵	pascals
atm	1.033	kg/cm²
bbl (British, dry)	5.78	ft³
bbl (British, dry)	0.1637	m³
bbl (British, dry)	36	gal (British)
bbl, cement	170.6	kg
bbl, cement	376	lb (cement)
bbl, oil	42	gal (U.S.)
bbl (U.S., liquid)	4.211	ft³
bbl (U.S., liquid)	0.1192	m³
bbl (U.S., liquid)	31.5	gal (U.S.)
bbl/min	42	gal/min
bbl/day	0.02917	gal/min
cm	0.3937	in
cm	3.281 x 10 ⁻²	ft
cm ³	3.531 x 10 ⁻⁵	ft³
deg (angle)	60	min
deg (angle)	0.01745	rad
deg (angle)	3600	S
deg/s	0.1667	rpm
deg/s	2.778 x 10 ⁻³	rev/s
ft	12	in
ft	0.3048	m
ft	1.89394 x 10 ⁻⁴	mi

Units	Multiply By	To Obtain
ft²	0.0929	m²
ft³	1728	in³
ft³	0.02832	m³
ft³	7.481	gal (U.S.)
ft³	28.32	liters
ft ³ of water (60°F)	62.37	lb
ft³/min	4.72 x 10 ⁻⁴	m³/s
ft³/min	0.1247	gal/s
ft³/min	0.472	liters/s
ft³/s	448.83	gal/min
ft³ - atm	2116.3	ft-lb
ft-lb	1.286 x 10 ⁻³	Btu
ft-lb	0.1383	kg/m
ft-lb	1.355818	Nm
ft/min	0.508	cm/s
ft/min	0.01667	ft/s
ft/min	0.01829	km/hr
ft/min	0.3048	m/min
ft/min	0.01136	mi/hr
ft-lb/min	0.01667	ft-lb/s
ft-lb/min	2.26 x 10 ⁻⁵	kW
ft-lb/s	1.356 x 10 ⁻³	kW
ft-lb/s	1.818 x 10 ⁻³	hp
g	0.001	kg
gal (British)	1.20094	gal (U.S.)
gal	3785	cm ³
gal	0.1337	ft³
gal	231	in³
gal	3.785	liters
gal/min	2.228 x 10 ⁻³	ft³/s
gal/min	3.785	liters/min
g-cm ²	3.4172 x 10 ⁻⁴	lb-in²
hp	0.7457	kW
in	25.4	mm
in²	645.2	mm²
in ²	6.452	cm²
in ²	6.944 x 10 ⁻³	ft²
in ³	1.639 x 10 ⁻⁵	m³
in³	5.787 x 10 ⁻⁴	ft³
in ³	4.329 x 10 ⁻³	gal
in³	0.01639	liters
in³	1000	liters

Units	Multiply By	To Obtain
kg	2.2046	lb
kg-m	7.233	ft-lb
kg/m³	0.06243	lb/ft³
kg/m	0.672	lb/ft
kW	4.462 x 10 ⁴	ft-lb/min
kW-hr	2.655 x 10 ⁶	ft-lb
lb	4.45 x 10⁵	dynes
lb	4.448	newtons
lb	4.535 x 10 ⁻⁴	tons (metric)
lb/ft³	16.02	kg/m³
lb/ft³	5.787 x 10 ⁻⁴	lb/in³
lb/ft²	4.882	kg/m²
lb/ft²	6.945 x 10 ⁻³	lb/in²
lb/gal	7.48	lb/ft³
lb/gal	0.12	specific gravity
lb/gal	0.1198	g/cm³
lb/in²	6.894757	kPa
liter	0.03531	ft³
liter	0.001	m³
liter	0.2642	gal
m	3.2808	ft
m²	10.764	ft²
m³	264.2	gal
m³/s	15850	gal/min
m³/s	60000	liters/min
mi ²	2.788 x 10 ⁷	ft²
mi²	2.59	km²
rad	57.3	deg
rad/s	0.1592	rev/s
rad/s	9.549	rpm
tons (metric)	1000	kg
W	0.7376	ft-lb/s
w	1.341 x 10 ⁻³	hp
yds	3	ft
yds	0.9144	m

Temperature	Conversion
Fahrenheit (°F) to Celsius (°C)	(5/9) x (°F - 32)
Celsius (°C) to Fahrenheit (°F)	1.8 x °C + 32

BIT OFF-BOTTOM TROUBLESHOOTING CHART

Primary Indication	Possible Cause	Subsequent Mode of Action
Drop in circulating pressure to lower than calculated	Lost circulation	Lost circulation procedure
	Drill string washout	Pull out for check
	Open dump valve	Stop pumps, restart with increased flow, pull string if not corrected
Circulating pressure higher than calculated	Plugged motor or bit	Stop pumps, restart and vary flow rate, then reciprocate string
	Bit side-loading	Drill ahead carefully to relax tool assembly

DRILLING WITH MOTOR ONLY

TROUBLESHOOTING CHART

Primary Indication	Secondary Indication	Possible Cause	Subsequent Mode of Action
No penetration	Drill Pipe Pressure (DPP) higher than maximum	Motor stall	Pull off-bottom to restart motor and apply WOB carefully
DPP rises higher than maximum calculated	No penetration	Motor stall	Pull off-bottom to restart motor and apply WOB carefully
	DPP rises – WOB normal	Broken or worn cutters. Bit "ringing"	Calculate cost-per-foot and either continue or pull out
	DPP falls – WOB normal	Hard formation or stabilizers hanging up	Continue with caution but if unsatisfactory, pull the bit
ROP decreases	DPP rises – Fails to respond to increased WOB	Bit balling	Lift off-bottom, reciprocate, then wash away balling material
	Slow fall in DPP	Bit is wearing	Calculate cost-per-foot and either continue or pull out
	DPP fluctuates	Assembly bouncing junk in hole	Attempt to wash away junk, then fish if unsuccessful
	DPP rises – WOB normal	Confer for the second of the s	Pull off-bottom, reassess angular reactive torque, then
Sudden rise in ROP	Tool Face Heading (TFH) turns to left	Solter formation efficionitiered	continue drilling using recalculated parameters

DRILLING WITH MOTOR AND ROTARY

TROUBLESHOOTING CHART

ROP	SPP	WOB	Rotary Torque	Possible Cause	Subsequent Mode of Action
			Normal	Open dump valve or wash out	Stop pumps, restart, vary flow rate, then pull string if not corrected
	Falls	Normal	Rises	Stabilizers reaming	Continue with caution but if unsatisfactory, pull bit
			Falls	Harder formation encountered	Optimize ROP, then continue drilling
Falls			<u>.</u>	Bit balling	Lift off-bottom, then reciprocate, wash away balling material
	Rises	Normal		Bit ringing	Calculate cost-per-foot and either continue or pull bit
			Rises	Motor stall	Immediately stop rotary, then pull off-bottom and restart cautiously
	Fluctuates	Normal	Fluctuates	Junk in hole, bit cones locking	Attempt to wash away junk, then fish if necessary
	Falls	Normal	Normal	Drill string wash-out	Pull out for check
Normal	Rises	Normal	Normal	Plugged motor or bit	Stop pump, restart and vary pressure, reciprocate string
Rises	Rises	Normal	Rises	Softer formation encountered	Optimize ROP, then continue drilling

SCIENTIFIC SOLUTIONS

DIRECTIONAL DRILLING

ROTARY STEERABLE SYSTEMS

MAGNETIC RANGING SERVICES

CASED HOLE SERVICES

MWD/LWD SERVICES

WELLBORE SURVEYING

CORPORATE HEADQUARTERS

16701 Greenspoint Park Drive Suite 200 Houston, TX 77060 +1.281.443.3300 +1.800.514.8949 www.scientificdrilling.com